期刊文献+

基于PCA的特征选择算法 被引量:18

Features Selection Algorithm Based on PCA
在线阅读 下载PDF
导出
摘要 在人脸识别的某些应用中,最好能够找到原始特征的关键子集,减少不必要的特征计算和资源耗费,而不是得到所有原始特征的映射。主成分分析法(Principal Components Analysis,PCA)是目前比较常用的人脸识别算法,PCA将人脸图像映射到能很好地表征训练图像集的特征脸空间中,但是基于PCA的人脸识别的缺陷在于原始空间所有的特征都映射到了低维特征空间中,是基于最佳描述性特征子集。提出了一种新的基于PCA的特征选择方法,将特征选择与特征抽取相结合,对特征脸空间再进行特征选择,选择人脸原始特征集中最关键的特征,并将其应用在基于PCA的人脸识别中。 In some applications of face recognition,it might be more desirable to pick a subset of the original features than to find a mapping that uses all of the original features.The benefits of finding this subset of features lie in cost reduced computations and thus lower cost of sensors.Principal components analysis(PCA) is widely used in face feature extraction and recognition.The facial images are projected onto eigenfaces that best define the variation of the known test images.However,the PCA-based face recognition has the disadvantage that,on the basis of an optimal descriptive feature subset,measurements from all the original features are used in the projection to the lower dimensional space.Propose a new method for dimensionality reduction of a feature set by choosing a subset of original features that contains most of the essential information.This method,based on PCA,combines together feature selection and feature extraction.The proposed method has been successfully applied in choosing principal features in PCA-based face detection and recognition.
作者 于成龙
出处 《计算机技术与发展》 2011年第4期123-125,共3页 Computer Technology and Development
基金 江苏省自然科学基金(08KJB520008) 南京邮电大学人才引进启动基金(NY207137 NY207148)
关键词 人脸识别 PCA 特征脸 特征选择 face recognition PCA eigenface feature selection
  • 相关文献

参考文献11

二级参考文献33

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2Sergios Theodoridis Konstantinos Koutroumbas.Pattern Recognition(Second Edition)[M].北京:机械工业出版社,2003.163-205.
  • 3Nojun Kwak,et al. Input Feature Selection for Classification Problems[ J ]. IEEE Transaction on Neural Network ,2002,13 : 143-157.
  • 4Ming Dong,Ravi Kothari. Feature Subset Selection Using a New Definition of Classifiability [ J ]. Pattern Recognition Letters ,2003,24 :1215-1225.
  • 5M Dash. Feature Selection via Set Cover [ C ]. Newport Beach:Proceedings of the 1997 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'97), 1997. 165-171.
  • 6M Morita, R Sabourin,et al. Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition[ C ]. Edinburgh, Scotland:International Conference on Document Analysis and Recognition ( ICDAR'03 ) ,2003. 666-671.
  • 7Jayanta Basak, Rajat K De, Sankar K Pal. Unsupervised Feature Selection Using a Neuro-fuzzy Approach [ J ]. Pattern Recognition Letters,1998,19( 11 ) :997-1006.
  • 8M Dash, H Liu ,J Yao. Dimensionality Reduction of Unsupervised Data[ C]. Newport Beach:Proc. 9th IEEE Int'l Conf Tools with Artifical Intelligence, 1997. 532- 539.
  • 9Nicolas V, L M, J-G Postaire. Unsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation[ C ]. Vancouver,Canada: IEEE International Conference on Image Processing (ICIP'2000) ,2000. 800-803.
  • 10Kira k,L A Rendell. A Practical Approach to Feature Selection[ C ].The 9th International Conference on Machine Learning, Morgan Kaufmann, 1992. 249-256.

共引文献255

同被引文献152

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部