期刊文献+

花生叶表面的高黏附超疏水特性研究及其仿生制备 被引量:43

Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials
原文传递
导出
摘要 花生是一种常见的豆科作物.与低黏附超疏水的荷叶不同,花生叶表面同时具有超疏水和高黏附特性.水滴在花生叶表面的接触角为151±2°,显示出超疏水特性.此外,水滴可以牢固地附着在花生叶表面,将花生叶翻转90°甚至180°,水滴均不会从表面滚落,显示了良好的黏附性(黏附力超过80μN).研究发现,花生叶表面呈现微纳米多级结构,丘陵状微米结构表面具有无规则排列的纳米结构.花生叶表面特殊的微纳米多尺度结构是其表面呈现高黏附超疏水特性的关键因素.结合实验数据,对花生叶表面特殊浸润性机理进行了简要阐述.受此启发,利用聚二甲基硅氧烷复形得到了与花生叶表面微结构类似的高黏附疏水表面.本文以期为仿生制备高黏附超疏水表面提供新思路. Peanut is a common legume.It is found that peanut leaves exhibit both superhydrophobicity and a high adhesive force with water,which is different from the lotus leaves with low adhesive superhydrophobicity.The water contact angle on peanut leaves is 151±2°.Furthermore,the water droplet does not slide on the peanut leaves surfaces when the surface is tilted at 90° or even upside down,indicating a high adhesive force to water(more than 80 μN).Micro-and nanoscale hierarchical structures are present on the surfaces of peanut leaves,where the hill-like microstructures are covered by nanostructures in a random distribution.In combination with the experimental results,the wettability mechanism of peanut leaves is also presented in this paper.Micro-and nanoscale hierarchical structures play a critical role in the formation of superhydrophobic and high adhesive surfaces.Inspired by peanut leaves,artificial surfaces with both hydrophobicity and a high adhesive force with water are fabricated by duplicating peanut leaf surface microstructures using polydimethylsiloxane.We expect this research may provie an inspiration for the biomimetic construction of superhydrophobic materials with a high adhesive force.
出处 《中国科学:化学》 CAS CSCD 北大核心 2011年第2期403-408,共6页 SCIENTIA SINICA Chimica
基金 国家重点基础研究发展计划(2007CB936400) 国家自然科学基金(20920102036 20974113 21001013) 高等学校博士学科点专项科研基金 中央高校基本科研业务费专项资金资助
关键词 仿生 受生物启发 超疏水 高黏附 花生叶 biomimetic bio-inspired superhydrophobicity high adhesion peanut leaf
  • 相关文献

参考文献32

  • 1Li YF, Zhang JH, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 2010, 5:117-127.
  • 2Sato O, Kubo S, Gu ZZ. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc Chem Res, 2009, 42: 1-10.
  • 3Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: Structure and mechanical properties. Prog Mater Sci, 2008, 53:1-206.
  • 4Sanclaez C, ArribartH, Guille MMG. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater, 2005, 4:277-288.
  • 5刘克松,江雷.仿生结构及其功能材料研究进展[J].科学通报,2009,54(18):2667-2681. 被引量:43
  • 6Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14:1857-1860.
  • 7Zheng YM, Gao XF, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3:178-182.
  • 8Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24:4114-4119.
  • 9Gao XF, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432:36-36.
  • 10Gao XF, Yan X, Yao X, Xu L, Zhang K, Zhang JH, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater, 2007, 19:2213-2217.

二级参考文献132

  • 1Aksay I A, Trau M, Manne S, et al. Biomimetic pathways for assembling inorganic thin films. Science, 1996, 273:892-898.
  • 2Cahn R W. Imitating nature's designs. Nature, 1996, 382:684.
  • 3Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature, 2000, 403:289-292.
  • 4Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater, 2005, 4:277-288.
  • 5Moutos F T, Freed L E, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater, 2007, 6:162-167.
  • 6Bellamkonda R V. Biomimetic materials-Marine inspiration. Nature Mater, 2008, 7:347-348.
  • 7Behrens P, Bauerlein E. Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry. Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA, 2007.
  • 8Jones J B, Sanders J V, Segnit E R. Structure of Opal. Nature, 1964, 204:990-991.
  • 9Parker A R, Welch V L, Driver D, et al. Structural colour -Opal analogue discovered in a weevil. Nature, 2003, 426:786-787.
  • 10Newton M R, Morey K A, Zhang Y H, et al. Anisotropic diffusion in face-centered cubic opals. Nano Lett, 2004, 4:875-880.

共引文献42

同被引文献443

引证文献43

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部