期刊文献+

基于卡尔曼滤波的折反射全向图像目标跟踪 被引量:1

Object Tracking Based on Kalman Filter for Catadioptric Omnidirectional Image
在线阅读 下载PDF
导出
摘要 由于折反射成像的特点,当目标在空间沿直线运动时,在全向图像上的成像轨迹不是直线而是二次曲线,导致在应用普通透视图像的轨迹预测方法时对目标的下一位置预测误差大.本文采用折反射成像统一的球面投影模型把已知的目标在全向图像上的成像点投影到球面上,然后在球面上建立全向卡尔曼滤波器对目标下一个位置进行预测,预测的结果重投影回全向图像上完成目标的位置预测.在合成和实际的全向视频上的实验结果显示修改后的全向卡尔曼滤波器目标位置预测精度和稳定性都得到显著提高. Because of the features of catadioptric imaging,when the object has linear motion in real space,its trajectory on omnidirectional images is not a straight line,but conic.It leads to the big error in prediction of object's next position when applying trajectory prediction method for common perspective image.The authors adopt unifying catadioptric imaging sphere projection model to project object's imaging point in omnidirectional images onto the sphere where the author then establishes omnidirectional kalman filter to predict next position of the object.The result of prediction will project back to omnidirectional image to fulfill position prediction of objects.Experimental results in synthetic and real omnidirectional video demonstrate an obvious improvement in accuracy and stabilization of modified omnidirectional kalman filter in object position prediction.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第2期464-470,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60705013 No.60872150)
关键词 折反射全向图像 卡尔曼滤波 目标跟踪 轨迹预测 catadioptric omnidirectional image Kalman filter object tracking trajectory prediction
  • 相关文献

参考文献17

  • 1Kalman, R E A new approach to linear filtering and prediction problems[ J]. Trans of the ASMF-Joumal of Basic Engineering, 1960,82 (Series D) : 35 - 45.
  • 2Barreto P, Araujo H. Geometric properties of cenlral catadiop tric liine images and their application in calibration [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27 (8) : 1327 - 1333.
  • 3Briggs, A J, Detweiler, C, Li, Y, Mullen, P, Scharstein, D. Matching scale-space features in ID panoramas [ J ]. Comput Vis Image Underst 103,21906:184- 195.
  • 4Cielniak, Miladinovic G, Hammarin M. et al. Appearance-based tracking of persons with an omnidirectional vision sensoriAl. Proceedings of Computer Vision and Pattern Recognition Workshop[ C]. Wisconsin: IEEE, 2003,84 - 89.
  • 5Boult T E, Gao X, Micheal R, et al. Omni-directional visual surveillance[J ]. Image and Vision Computing In Visual Surveillance, 2004,22 (7) : 515 - 534.
  • 6Huei-Yung Lin, Ming-Liang Wang, Chi-Chang Huang. A robust visual surveillance system based on an omnidirectional vision sensor[ J]. Journal of Computers, 2008, 19 (3) : 3 - 14.
  • 7Mei C,Benhimane S,Malis E,et al. Homography-based track- ing for central catadioptric cameras[ A ] .Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems [C]. Beijing:IEEE,2006.669- 674.
  • 8Liu,H Y, Javed O, Taylor, G, et al. Omni-directional surveil- lance for unmanned water vehicles [ A ]. Proceedings of the Eighth International Workshop on Visual Surveillance[ C]. Mar seille: IEEE, 2008.
  • 9Ikoma N, Ryuichi Yamaguchi, Kawano H. Tracking of multiple moving objects in dynamic image of omni-directional camera using PHD Filter[ J]. Journal of Advanced Computational Intel ligence and Intelligent Informatics,2008,12( 1 ):167- 180.
  • 10Yang Shu-Ying, Ge WeiMin, Zhang Cheng. Tracking unknown moving targets on omnidirectional vision[ J]. Vision Research, 2009,49: 362 - 367.

二级参考文献30

  • 1杨涛,李静,潘泉,程咏梅,王涛.基于"粒子"滤波器的复杂环境下头部跟踪算法[J].计算机工程与设计,2005,26(2):354-355. 被引量:3
  • 2马野,王孝通,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916. 被引量:16
  • 3王健,张桂林.复杂背景下运动目标的实时跟踪[J].计算机与数字工程,2005,33(11):18-21. 被引量:5
  • 4姚剑敏,孙俊喜,孙中森,宋建中.基于粒子滤波的小波特征跟踪方法研究[J].计算机仿真,2006,23(1):94-95. 被引量:5
  • 5Singer R A, Stein J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[ A]. Proc of IEEE Conference on Decision and Control [C] .Miami Beach: IEEE Press, 1971. 171 - 175.
  • 6Mahler R. A theoretical foundation for the stein-winter probability hypothesis density(PHD) multi-target tracking approach[ J]. Proc of the MSS National Symposium on Sensor and Data Fusion,2000,1(3) :99 - 118.
  • 7Mahler R. Multi-target moments and their application to multi-target tracking[ A ]. Proc of Workshop on Estimation, Tracking and Fusion: A tribute to Yaakov Bar-Shalom[ C]. Monterey: IEEE Press,2001. 134 - 166.
  • 8Mahler R. Multi-target bayes-fdtering via first-order multi-target moments[ J ]. IEEE Trans -on Aerospace and Electronic Systems, 2003,39(4) : 1152 - 1178.
  • 9J Vermaak, S J GodsiU,P Perez. Monte carlo filtering for multi-target tracking and data association [ J ]. IEEE Trans on Aerospace and Electronic Systems, 2005,41 ( 1 ) : 309 - 332.
  • 10Y Bar-Shalom, Fortman T E. Tracking and data association [A ]. New York Academic Press Inc [ C ]. San Diego: IEEE Press, 1988.26 - 31.

共引文献39

同被引文献11

  • 1谭磊,张桦,薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学学报,2006,22(6):66-69. 被引量:11
  • 2赵树杰.赵建勋.信号检测与估计理论[M].北京:清华大学出版社.2008.
  • 3WELCH G, BISHOP G. An introduction to the Kalman filter [R]. Chapel Hill, Carolina: University of North Carolina, 1997.
  • 4YIN Peng-Yeng. Particle swarm optimi-zation for point pattern matching [J]. Vis. Commun. Image R, 2006, 17: 143-162.
  • 5YANG Shu-ying, GE Wei-min, ZHANG Cheng. Tracking un- known moving targets on omnidirectional vision [J]. Vision Re- search, 2009, 49: 362-367.
  • 6ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram [C]// Processings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.I.]: IEEE, 2006: 798-805.
  • 7COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift [C]// Proceedings of the IEEE Conf. on Computer Vision and Pattern Recogition (CVPR). [S.1.]: IEEE, 2000: 142-149.
  • 8IKOMA N, YAMAGUCHI R, KAWANO H. Tracking of mul- tiple moving objects in dynamic image of omni-directional cam- era using PHD filter [J]. Journa of Advanced Computational In- telligence and Intelligent Informatics, 2008, t2( 1 ) : 167-180.
  • 9虞旦,韦巍,张远辉.一种基于卡尔曼预测的动态目标跟踪算法研究[J].光电工程,2009,36(1):52-56. 被引量:42
  • 10欧阳宁,游锦海,莫建文,张彤.遮挡情况下的多目标跟踪算法[J].计算机应用研究,2010,27(5):1984-1986. 被引量:10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部