期刊文献+

基于监督局部线性嵌入特征提取的高光谱图像分类 被引量:2

Feature extraction based on supervised locally linear embedding for classification of hyperspectral images
在线阅读 下载PDF
导出
摘要 高光谱图像的数据维数高、数据量大、数据间高度冗余等特点给图像分类带来困难,为进行有效降维、提高分类精度,提出了一种监督局部线性嵌入(SLLE)非线性流形学习特征提取方法。SLLE算法根据数据先验类标签信息所给出的新距离寻找数据点的k最近邻(NN),新距离使得类内距离小于类间距离,这使得SLLE算法更有利于分类。高光谱图像数据和UCI数据的分类结果表明了该方法的有效性。 Hyperspectral image has high spectral dimension, vast data and altitudinal interband redundancy, which brings problems to image classification. To effectively reduce dimensionality and improve classification precision, a new extraction method of nonlinear manifold learning feature based on Supervised Local Linear Embedding (SLLE) for classification of hyperspectral image was proposed in this paper. A data point's k Nearest Neighbours (NN) were found by using new distance function which was proposed according to prior class-label information. Because the intra-class distance is smaller than inter-class distance, classification is easy for SLLE algorithm. The experimental results on hyperspectral datasets and UCI data set demonstrate the effectiveness of the presented method.
出处 《计算机应用》 CSCD 北大核心 2011年第3期715-717,720,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(10926197 60972150) 西北工业大学基础研究基金资助项目(JC201053)
关键词 特征提取 降维 监督局部线性嵌入 流形学习 高光谱图像分类 feature extraction dimensionality reduction Supervised Locally Linear Embedding (SLLE) manifold learning hyperspectral image classification
  • 相关文献

参考文献18

  • 1JIMENEZ L O, RIVERA-MEDLAN J L, RODIRGUEZ-DIAZ E, et al. Integration of spatial and spectral information homgenous by means of unsupervised extraction and classifocation for objects ap- plied to multispectral and hyperspectral data [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 844 -851.
  • 2赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 3RODARMEL C, SHAN J. Principal component analysis for hyper- spectral image classification [ J]. Survveying and Land Information Science, 2002, 62(2) : 115 - 122.
  • 4JIA X P, RICHARDS J A. Segemted pricipal comonpents transfor- mation for efficient hyperspeetral remote sensing image display and classification [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 538-542.
  • 5BACHMANN C M, AINSWORTH T L, FUSINA R A. Exploiting manifold geometry in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441 -454.
  • 6ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
  • 7TENENBAUM J B, de SILVA V, LANGFORD J C. A global geo- metric framework for nonlinear dimensionality reduction [ J]. Sci- ence, 2000, 290(5500): 2319-2323.
  • 8BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral tech- niques for embedding and clustering [ C]// NIPS 2001: Advances in Neural Information Processing System, 14. Cambridge, MA: MIT Press, 2002:585-591.
  • 9DONG G J, ZHANG Y S, JIN S. Dimensionahty reduction of hyper- spectral data based on ISOMAP algorithm [ C]// Proceedings of the Eighth International Conference on Electronic Measurement and Instru- ments. Washington, DC: IEEE Computer Society, 2007:935-938.
  • 10CHEN Y C, CRAWFORD M M, GHOSH J. Applying nonlinear manifold learning to hyperspectral data for land cover classification [ C]//IGARSS'05: Proceedings of the 2005 IEEE International Ge- oscience and Remote Sensing Symposium. Washington, DC: IEEE Computer Society, 2005:24-29.

二级参考文献35

  • 1Green R. Imaging Spectroscopy and Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Enviroment, 1998,65:227-248
  • 2Richard L J, Fisher J, Anderson M. Hydice:A Status Report. In Proc. Int. Symp. Spectral Sensing Res. San Diego, CA, 1995:89-92
  • 3Vane G, Green R, Chrien T, et al. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 1993,44:127-143
  • 4Chavez P S, Jr Berlin G L, Sowers L B. Statistical Method for Selecting Landsat MSS Ratios. Journal of Applied Photographic Engineering, 1982,8:23-30
  • 5Junping Zhang, Ye Zhang, Bin Zou, et al. Fusion Classification of Hyperspectral Image Based on Adaptive Subspace Decomposition. ICIP2000 Proceeding, Canada. IEEE Signal Processing Society, 2000,3:472-475
  • 6Zhang Ye, Zhang Junping, Jin Ming, et al. Adaptive Subspace Decomposition and Classificaion for Hyperspectral Images. Chinese Journal of Electronics,2000,9(1):82-88
  • 7Zhang Ye, Mita D Desai, Zhang Junping. Adaptive Subspace Decomposition for Hyperspectral Data Dimensionality Reduction. ICIP99 Proceeding, Japan. IEEE Signal Processing Society, 1999,2:326-329
  • 8Jia Xiuping, Richards J A. Segemted Pricipal Comonpents Transformation for Efficient Hyperspectral Remote-Sensing Image Display and Classification. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(1):538-542
  • 9Luis O Jimenez, David A Landgrebe. Hyperspectral Data Analysis and Supervised Feature Reduction via Projection Pursuit. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(6):2653-2667
  • 10Luis O Jimenez, Landgrebe D A. Projection Pursuit for High Dimensional Feature Reduction: Parallel and Sequential Approaches. Geoscience and Remote Sensing Symp. (IGARSS'95), Florence. Italy.1995.

共引文献22

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部