期刊文献+

基于全相位频谱插值的欠采样频率估计 被引量:2

Frequency Estimation Based on Interpolated All-Phase Spectrum with Sub-Nyquist Sampling
在线阅读 下载PDF
导出
摘要 提出利用两个独立欠采样通道输出信号的互谱函数实现对欠采样信号的无模糊频率估计,为了提高测频精度,需要对信号真实频率与最大频域输出幅值对应量化频率的偏差进行较高精度的估算,采用全相位FFT与传统FFT联合校正频率偏差的方法,提出了全相位Rife综合算法,根据全相位FFT输出的最大谱线和次大谱线的比值决定采用全相位Rife算法或修正的细化Rife算法,仿真结果验证了该方法的有效性及高精度特性。 By using cross spectrum of signals from two independent channels,unambiguous frequency estimation for wideband signal with sub-Nyquist sampling is provided.To improve frequency measurement accuracy,high accuracy estimation of bias between real signal frequency and quantization frequency related to maximum amplitude of outputs in frequency domain is required.Based on joint all-phase FFT and traditional FFT,all-phase Rife synthesized algorithm composed of all-phase Rife algorithm and modified fined Rife algorithm is proposed in this paper.Which algorithm is employed is determined according to the amplitude ratio of maximum spectrum and sub-maximum spectrum of all-phase FFT outputs.Performance of effectiveness and high accuracy of the method are supported by simulation results.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第12期2771-2775,共5页 Journal of Astronautics
基金 国防预研基金资助(JY0100090201)
关键词 欠采样 互谱 频率估计 全相位Rife综合算法 Sub-Nyquist sampling Cross spectrum Frequency estimation All-phase Rife synthesized algorithm
  • 相关文献

参考文献7

二级参考文献40

共引文献67

同被引文献26

  • 1邓兵,陶然,曲长文.分数阶Fourier域中多分量chirp信号的遮蔽分析[J].电子学报,2007,35(6):1094-1098. 被引量:28
  • 2Kirolos S, Laska J, Wakin M, et al. Analog-to-Information conversion via random demodulation [ C ]. Integration and Software Workshop, Dallas, USA, July 6 -8, 2006.
  • 3Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals [ J ]. IEEE Transactions on Information Theory, 2010, 56 ( 1 ) : 520 - 544.
  • 4Lexa M A, Davies M E, Thompson J S. Reconciling compressive sampling systems for spectraily sparse continuous - time signals [J]. IEEE Transactions on Signal Processing, 2012, 60 ( 1 ) : 155 - 171.
  • 5Mishali M, Eldar Y C, Elron A J. Xampling: signal acquisition and processing in union of subspaces[ J]. IEEE Transactions on Signal Processing, 2011, 59(10) : 4719 -4734.
  • 6Tropp J A. Algorithms for simultaneous sparse approximation. Part I: greedy pursuit [ J]. Signal Process, 2006, 86 (3) : 572 - 588.
  • 7Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. Society for Industrial Applied Mathematics, 2001,43(1) : 129 -159.
  • 8Hyder M M. Estimation of sparse distributions [ D ]. Newcastle: School of Electrical Engineering and Computer Science, 2012.
  • 9刘章孟.基于信号空域稀疏性的阵列处理理论与方法[D].长沙:国防科学技术大学,2012.
  • 10Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211 -244.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部