期刊文献+

穷举杆型类配方案时最多副杆的确定方法 被引量:2

Method of deciding maximum pair rods when exhausting the rod style classification and distribution plan
在线阅读 下载PDF
导出
摘要 为了在机构再生设计当中更齐全地列举杆型类配方案,提出了最多副杆的确定方法。假设除二副杆之外,只有一个最多副杆。根据总杆数和总副数可得出该最多副杆的运动副元素数。然后基于结构不退化原则,得出该数的限制公式,并通过逐次减1进行修正。最后,根据总杆数和各杆型的运动副元素数穷举出各杆型类配方案。对于十杆十三副运动链,该确定方法比通常方法多列举出两个方案;对于十三杆十六副运动链,多列举出4个方案。所以基于文中提出的最多副杆确定方法,可更加齐全地列举杆型类配方案。 In order to exhaust the rod style classification and distribution plan(RSCDP) more completely in mechanism regeneration design,the method of deciding the rod with maximum number of pairs is proposed.Supposing that there is one rod with maximum number of pairs except for the rods with two pairs,the maximum number can be expressed based on the total number of rods and pairs.Then,based on the principle of no structure degradation,the restriction formula of the maximum number is deduced and corrected by subtracting one by one.At last,the RSCDPs are exhausted according to the maximum number,total rods number,total pair number and pair number on each kind of rods.For the 10 rods 13 pairs chain and 13 rods 16 pairs chain,9 and 13 RSCDPs are exhausted respectively be the proposed method.by reducing in steps of 1.two more plans can be exhausted by comparing this method with commonly used method.Therefore,the RSCDPs can be exhausted completely with the proposed method.
作者 李春明 陈静
出处 《机械设计》 CSCD 北大核心 2011年第1期13-15,共3页 Journal of Machine Design
基金 山东省自然科学基金资助项目(Q2006A08)
关键词 机械设计及理论 杆型类配 最多副杆 穷举法 创新设计 一般化运动链 machine design and theory rod style classification and distribution most pair rod exhaustion method innovation design generalized kinematic chain
  • 相关文献

参考文献4

二级参考文献13

  • 1李辉.基于拓扑分析的机构创新设计方法的研究[J].机械科学与技术,2004,23(12):1440-1443. 被引量:7
  • 2罗金良,黄茂林,文群.自适应运动链的构型综合及应用研究[J].机械设计与研究,2006,22(5):33-36. 被引量:5
  • 3聂建武.应用再生运动链法对夹具进行创新设计研究[J].机械制造,2007,45(7):11-13. 被引量:1
  • 4吕仲文.机械创新设计[M].北京:机械工业出版社,2005.
  • 5Jensen, Preben W. Classical and modem mechanisms for engineers and inventors[M]. New York: M. Dekker, 1991.
  • 6Yan H S, Hall A S. Linkage characteristic polynomials: definitions, coefficients, by inspection[J]. Trans. ASME, J. of Mech. Design, 1981,103(3):578~584.
  • 7Mruthyunjaya T S, Balasubraman H R. In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains[J]. Mech. Mach. Theory, 1987,22(2):131~139.
  • 8Rao A C, Raju D V. Application of the hammining number technique to detect isomorphism among kinematic chains and inversions[J]. Mech. Mach. Theory, 1991,26(1):55~75.
  • 9Chu J K, Cao W Q. Identification of isomorphism among kinematic chains and inversions using link′s adjacent-chain-table[J]. Mech. Mach. Theory, 1994,29(1):53~58.
  • 10Song L, Yang J, Cao W Q. Spanning tree method of identifying isomorphism and topological symmetry to planar kinematic chain with multiple joint[J]. Chinese Journal of Mechanical Engineering, 2001,14(1):27~31.

共引文献11

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部