期刊文献+

基于Schur正交的局部Fisher判别转子故障诊断 被引量:4

Rotor Fault Diagnosis Based on Schur Orthogonal Local Fisher Discriminant
在线阅读 下载PDF
导出
摘要 为更好识别转子系统故障,将正交思想引入到局部Fisher判别分析(LFDA)中,提出了一种基于Schur正交的局部Fisher判别(SOLFD)监督流形学习算法。算法以转子故障训练样本为监督信息,通过局部加权邻接矩阵重新定义类内散度和类间散度,构建局部Fisher判别函数。以判别函数值最大化为目标,通过Schur正交分解方式求解最优正交投影向量。将新增测试数据投影到该向量上,获取新数据故障类别信息。转子故障诊断实验表明,相对其他流形学习算法,SOLFD算法有更好的诊断效果。 In order to better identify the fault of a rotor system,a new method of fault diagnosis based on Schur orthogonal local Fisher discriminant(SOLFD) is proposed to solve the fault diagnosis of a rotor system.In this method,the training data as supervision information was used to compute the local with-class scatter and between-class scatter,and to construct the local fisher discriminant function.To maximize the value of discriminant function,optimal orthogonal projection vector was acquired.New test data was mapped to the projection vector and its fault information was known.Experiment for rotor fault diagnosis shows that SOLFD is better than other manifold learning algorithms.
出处 《机械科学与技术》 CSCD 北大核心 2011年第1期62-65,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51075140) 湖南省自然科学基金重点项目(09JJ8005) 湖南省科技创新团队资助
关键词 Schur正交 局部Fisher判别 故障诊断 orthogonal iteration local Fisher discriminant fault diagnosis
  • 相关文献

参考文献13

  • 1Seung H S, Daniel D L. The manifold ways of perception[J]. Science, 2000,290 (5500) :2268 - 2269.
  • 2Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 (5500) : 2323 - 2326.
  • 3Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation, 2003,15(6) :1373 - 1396.
  • 4Zhang Z Y, Zha H Y. Principal manioflds and nonlinear dimension reduction via Tangent Space Alignmnet[ J]. SIAM Journal on Scieutific Computing, 2005,26( 1 ) :313 -338.
  • 5He X F, et al. Face recognition using laplacianfaces[J]. IEEE Transcation on Pattern Analysis and Machine Intelligence, 2005,27 (3) :328 - 340.
  • 6Sugiyama M. Local fisher discriminant analysis for aupervised dimensionality reduction[ A]. Proceedings of 23rd International Conference on Machine Learning[ C ], 2006.
  • 7Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Machine Learning Research, 2007,8(5) :1027 - 1061.
  • 8Kouropteva O, et al. Supervised locally linear embedding algorithm for pattern recognition[ J ]. Pattern Recognition and Image Analysis, 2003,2652(9) :386 - 394.
  • 9Belkin M, Niyogi P. Semi-supervised Iearning on riemannian manifolds [ J ]. Maching Learing, 2004,56 ( 1 ) : 209-239.
  • 10阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158. 被引量:31

二级参考文献29

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2TAKENS F.Detecting strange attractors in turbulence[R].Lecture Notes in Math.New York:Springer,1981.
  • 3SAUER T,YORKE J A,CASDAGLI M.Embedology[J].Journal of Statistical Physics,1991,65:579-616.
  • 4GRASSBERGER P,HEGGER R,KANTZ H,et al.On noise reduction methods for chaotic data[J].Chaos,1993,3(2):127-141.
  • 5KANTZ H,SCHREIBER T.Nonlinear time series analysis[M].Cambridge:Cambridge University Press,1997.
  • 6KOSTELICH E J,SCHREIBER T.Noise reduction in chaotic time-series data:A survey of common methods[J].Physical Review E,1993,48(3):1 752-1 763.
  • 7SHIN K,HAMMOND J K,WHITE P R.Iterative SVD method for noise reduction of low dimensional chaotic time series[J].Mechanical Systems and Signal Processing,1999,13(1):115-124.
  • 8ROWELS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2 323-2 326.
  • 9TENENBAUM J B,SILVA V D,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2 319-2 323.
  • 10ZHANG Zhengyue,ZHA Hongyuan.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[R].CSE-02-019,Technical Report,CSE,Penn.State Univ.,2002.

共引文献59

同被引文献31

  • 1肖云魁,李世义,王建新,杨万成,曹亚娟.以粗糙集近似逼近理论提取发动机振动故障特征[J].振动.测试与诊断,2004,24(4):262-265. 被引量:7
  • 2张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:76
  • 3Scholkopf B, Smola A, MOiler K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10(5) : 1299-1319.
  • 4Yang W K, Sun C Y, Zhang L. A muhi-manifold dis- criminat analysis for image feature extraction [ J ]. Pattern Recognition, 2011,44 (8) : 1649-1657.
  • 5Cai D, He X F, Zhou K, et al. Locally sensitive diserimi- nant analysis [ C ]//Proceedings of the 20'h International Joint Conference on Artificial Intelligence. California: AAAI press, 2007:708-713.
  • 6Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500) : 2323-2326.
  • 7Dijkstra E W. A note on two problems in connexion with graphs [ J ]. Numerische Mathematik, 1959, 1 ( 1 ) : 269-271.
  • 8Lei Y G, He Z J, Zi Y Y. A new approach to intelligent fault diagnosis of rotating machinery[ J]. Expert Systems with Applitions, 2008,35 (4) : 1593 - 1600 K.
  • 9ouropteva O, Okun O, Hadid A, et al. Beyond locally linear embedding algorithm [ R ]. Technical Report MVG-01-2002. Machine Vision Group, Uni- versity of Oulu,2002.
  • 10沈永红,王发兴.基于信息熵的粗糙集属性离散化方法及应用[J].计算机工程与应用,2008,44(5):221-224. 被引量:13

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部