期刊文献+

多模态音乐流派分类研究 被引量:3

Study on Multi-modal Music Genre Classification
在线阅读 下载PDF
导出
摘要 针对自动的音乐流派分类这一音乐信息检索领域的热点问题,提出了多模态音乐流派分类的概念。针对传统的基于底层声学特征的音乐流派分类中的特征选择环节,实现了一种全新的特征选择算法——基于特征间相互影响的前向特征选择算法(IBFFS)。开创性地使用LDA(latent Dirichlet allocation)模型处理音乐标签,将标签属于每个流派的概率通过计算转换为对应的音乐属于每个流派的概率。 According to the automatic music genre classification, propose a concept of multi-modal music genre classification. For the feature selection step in the traditional method which is based on the low-level acoustic fea- tures, realize a novel feature selection algorithm-interaction based forward feature selection (IBFFS). Use LDA(latent Dirichlet allocation) model tags which are available on the Internet, convert the probability of tags for each genre into the probability of music resources for each genre responding to the tags.
出处 《计算机科学与探索》 CSCD 2011年第1期50-58,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.32508018~~
关键词 音乐流派分类 基于特征间相互影响的前向特征选择算法(IBFFS) 特征选择 音乐标签 LDA模型 music genre classification interaction based forward feature selection (IBFFS) feature selection music tags latent Dirichlet allocation (LDA)
  • 相关文献

参考文献14

  • 1Cui B, Jagadish H V, Ooi B C, et al. Compacting music signatures for efficient music retrieval[C]//Proceedings of the 1 lth International Conference on Extending Database Technology(EDBT), 2008: 229-240.
  • 2Tzanetakis G, Cook P. Musical genre classification of audio signals[J]. IEEE Transactions on Speech and Audio Processing, 2002, 10(5): 293-302.
  • 3McKay C, Fujinaga I. Automatic genre classification using large high-level musical features[C]//Proceedings of the International Conference on Music Information Retrieval, 2004: 525-530.
  • 4Liu C C, Huang C S. A singer identification technique for content-based classification of MP3 music objects[C]// Proceedings of the llth International Conference on Information and Knowledge Management, Virginia USA,2002:438-445.
  • 5Huang Y, Shian-Shyong T, Wu G, et al. A two-phase feature selection methods using both filter and wrap- per[C]//Proceedings of the 1999 IEEE International Conference on Systems, Man and Cybernetics, 1999, 2: 132-136.
  • 6Kohavi R, Frasca B. Useful feature subsets and rough set reducts[C]//The 3rd International Workshop on Rough Sets and Soft Computing, 1994: 310-317.
  • 7Setiono R, Liu H. Neural-network feature selector[J] IEEE Transactions on Neural Networks, 1997, 8(3) 654-662.
  • 8Lee H M, Chen C M. An efficient fuzzy classifier with feature selection based on fuzzy entropy[J]. IEEE Transactions on Systems and Cybernetics-Part B: Cybernetics, 2001, 31(3): 426-432.
  • 9Koller D, Sahami M. Toward optimal feature selection[C]//Proceedings of the 13th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1996: 284-292.
  • 10Li Ming, Sleep R. Genre classification via an LZ78-based string kernel[C]//Proceedings of the 6th International Conference on Music Information Retrieval, London, UK 2005:252-259.

同被引文献38

  • 1刘怡,高弱.一种基于文本关键字模型的Audio音乐情感分类方法[C].第四届和谐人机环境联合学术会议论文集,2008:65-71.
  • 2熊小梅,刘永浪.基于LSA的二次降维法在中文法律案情文本分类中的应用[J].电子测量技术,2007,30(10):111-114. 被引量:8
  • 3TZANETAKIS G,COOK P.Musical genre classification of audio signals[J].IEEE Transactions on Speech and Audio Processing,2002,10(5):293-302.
  • 4BACH F R,LANCKRIET G R G,JORDAN M I.Multiple kernel learning,conic duality,and the SMO algorithm[EB/OL].[2014-12-02].http://www.cs.berkeley.edu/-jordan/papers/skm_icml.pdf.
  • 5LUKASHEVICH H.Applying multiple kernel learning to automatic genre classification[C]//Proceedings of the 34th Annual Conference of Challenges at the Interface of Data Analysis,Computer Science,and Optimization.Berlin:Springer,2012:393-400.
  • 6VAPNIK V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Network,1999,10(5):988-999.
  • 7SONNENBURG S,R?TSCH G,SCH?FER C,et al.Large scale multiple kernel learning[J].Journal of Machine Learning Research,2006,7:1531-1565.
  • 8KOSTEK B,KUPRYJANOW A,ZWAN P,et al.Report of the ISMIS 2011 contest:music information retrieval[C]//ISMIS 2011:Proceedings of the 19th International Symposium on Foundations of Intelligent Systems,LNCS 6804.Berlin:Springer,2011:715-724.
  • 9丁允静,闫志刚,高瞻.一种RBF核SVM的参数选择方法[EB/OL].北京:中图科技论文在线.[2014-12-05].http://www.paper.edu.cn/html/releasepaper/2010/05/659/.
  • 10WVLFING J.RIDEMILLER M.Unsupervised learning of local features for music classification[EB/OL].[2014-12-03].http://ml.informatik.uni-freiburg.de/_media/publications/wuelf2012.pdf.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部