期刊文献+

一种新的基于平衡决策树的SVM多类分类算法 被引量:21

A new SVM multi-class classification algorithm based on balance decision tree
原文传递
导出
摘要 为了有效地减少样本训练时间,提高多类分类器的识别率,同时使模型具有较好的推广能力,在综合考虑待分类样本数和类别易分性能的基础上,在"先分样本数较大的类"和"先分易分的类"之间折衷考虑,提出一种基于样本的新的类划分方案.采用平衡决策树结构,得到了一种新的决策树支持向量机多类分类算法.实验结果表明,该算法在不降低识别率的情况下,能大大减少系统的训练时间,是一种有效的多类分类算法. In order to decrease the sample training time effectively, improve the identification rate, and make the model has good generalization ability, a new class partition project based on samples is proposed. This project makes a comprehensive consideration of the number of waiting classification samples and the capability of class partition, and takes a compromise between the "first classifying the classes with a large number of samples" and the "first classifying the classes that can be partitioned easily". And a new decision-tree-based support vector machines multi-class classification algorithm is proposed, which adopts the balance decision tree structure. The experimental results show that the 'algorithm can significantly reduce system training time at the condition of not reducing identification rate, and is an effective multi-class classification algorithm. :
出处 《控制与决策》 EI CSCD 北大核心 2011年第1期149-152,156,共5页 Control and Decision
基金 国家863计划项目(2007AA10Z237) 北京市自然科学基金项目(40810010)
关键词 支持向量机 决策树 多类分类器 类间可分性 support vector machines decision tree multi-class classifiers inter-class separability
  • 相关文献

参考文献15

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 2厉小润,赵光宙,赵辽英.决策树支持向量机多分类器设计的向量投影法[J].控制与决策,2008,23(7):745-750. 被引量:14
  • 3Weston J, Watkins C. Multi-class support vector machines[R]. London: Royal Holloway University of London, 1998.
  • 4KreBerl U PairWise. Classification and support vector machines[C]. Advances in Kernel Methods Supprot Vector Learning. Cambrige: MIT Press, 1999: 255-268.
  • 5Bottou L, Cortes C, Denker J. Comparison of classifier methods: A case study in handwriting digit recognition[C]. Proc of the 12th IAPR Int Conf on Pattern Recognition. Jerusalerm: IEEE, 1994, 2: 77-82.
  • 6Platt J C, Cristianini N, Shawe Taylor J. Large margin DAGs for multiclass classification[C]. Advances in Neural Information Processing Systems. Cambridge: Mtt Press, 2000: 547-268.
  • 7应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 8唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 9Sahbi Hichem, Geman Donald, Perona Pietro. A hierarchy of support vector machines for pattern detection[J]. J of Machine Learning Research, 2006, 7(10): 2087-2123.
  • 10唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50

二级参考文献82

共引文献206

同被引文献203

引证文献21

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部