期刊文献+

基于LM算法建立风电机组神经网络故障预警诊断模型 被引量:9

ESTABLISHMENT OF FAULT WARNING DIAGNOSIS MODEL FOR WIND POWER UNITS BASED ON LM ALGORITHM OF NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 基于人工神经网络LM算法,建立了风力发电机组故障预警诊断模型。神经网络LM算法是一种BP的改进算法,但同时也存在易陷入局部极小的问题,对此采用施加动量使其跳出局部极小的方法,取得了良好的效果。应用Matcom工具实现VC++与Matlab软件混合编程的方法,解决了算法程序化过程中遇到的复杂矩阵运算问题,提高了算法性能。将改进后的算法用于结构为15-22-4的风电机组故障预警诊断模型训练和检验,结果证明网络收敛性能良好。该算法模型已嵌入风电机组故障预警诊断软件中。 Based on LM algorithm of an artificial neural network,a model for fault warning diagnosis of wind power units has been established.The LM algorithm of neural network is an improved BP algorithm,but the problem of easily falling into local minimum is still existing.For this,a momentum method has been applied to bounce out from the local minimum,achieving good effectiveness.By using Matcom tool,the hybrid programming method between VC++ and Matlab softwares has been realized,the problem of complex matrix calculation encountered in the process of algorithm programming being resolved,enhancing the performance of algorithm.The improved algorithm has been used in training and inspection of the fault warning diagnosis model for a wind power unit with structure of 15-22-4,result shows that the converge performance of the network is good.The model of said algorithm has already been embedded into software of fault warning diagnosis for wind power units.
出处 《热力发电》 CAS 北大核心 2010年第12期44-49,共6页 Thermal Power Generation
基金 陕西省自然科学研究计划项目(2007E236)
关键词 风力发电 LM算法 局部极小 故障预警诊断 模型 Matcom软件 wind power generation LM algorithm local minimum fault diagnosis Matcom
  • 相关文献

参考文献8

二级参考文献24

  • 1贺清碧,周建丽.BP神经网络收敛性问题的改进措施[J].重庆交通学院学报,2005,24(1):143-145. 被引量:19
  • 2孙德保,高超.一种实用的克服局部极小的BP算法研究[J].信息与控制,1995,24(5):283-287. 被引量:18
  • 3李录平.高压加热器系统内部故障的FUZZY诊断[J].热能动力工程,1996,11(5):326-328. 被引量:3
  • 4唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 5http ://www. skf. com
  • 6Hopfield J J. Neural Networks and Physical Systems with Emerggent collective Computing Abilities [J~. Proc Nati. Acad Sci. USA. 1982, 79 (4): 2554-2558.
  • 7刘增良.模糊技术与应用丛书[M].北京:北京航空航天大学出版社,1994:180-181.
  • 8[5]Hagan M T, Menhaj M B. Training feedforward net -works with the marquardt algorithm[J], IEEE Trans Neural Net, 1994, 5(6):989-993.
  • 9[7]KEARNS M. A bound on the error of cross validation using the approx-imation and estimation rates with consequences of for the training-test split[J]. Neural Comutation, 1997, 9(5) :1143 - 1161.
  • 10Mideva, Matcom & Visual Matcom User's Guide V4.5 release[M].MathTools Ltd, 1999.

共引文献120

同被引文献68

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部