期刊文献+

重尾分布的网络流量SVM分类 被引量:1

SVM Classification of Heavy-Tailed Internet Traffic
在线阅读 下载PDF
导出
摘要 网络流量表现出突发和自相似等动态特性,使得网络应用很难进行准确分类。本文分析了流量动态特性产生的不平衡性及其重尾分布,提出了基于重尾分布的流量分类定量分析模型。基于该分析模型,研究分类算法中训练集采集位置和规模大小的选取。考虑到混合流量中的次要数据流通常是小样本,选用支持向量机(SVM)算法进行流量分类。实验结果表明:重尾分布的流量分类训练集可以选择最佳采集位置和规模,以获得较好的分类模型,该定量分析模型对流量分类及提高分类精度有指导意义。 The dynamic characteristics of burstiness and self-similarity make it difficult to classify the various applications from internet traffic.By analyzing the imbalance and heavy-tailed distribution of internet traffic,a heavy-tailed traffic based classification model for quantitative analysis is proposed.Both the sampling position and the window of training set in the long tail of traffic are studied.The SVM algorithm is adopted for the traffic classification,since the minor one included in a combined traffic is generally small sampling.The experimental results show that the heavy-tailed traffic can obtain a better classification mode by choosing best sampling position and scale of training set.Moreover,the quantitative analysis model has positive significance for achieving better classification precisions.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期807-811,共5页 Journal of East China University of Science and Technology
关键词 流量分类 突发 重尾分布 不平衡数据集 支持向量机(SVM) traffic classification burstiness heavy-tailed distribution imbalanced dataset SVM
  • 相关文献

参考文献9

  • 1Moore A W, Crogan M, Zuev D. Discriminators for use in flow-based elassification[EB/OL]. [2005-02]. http://www. el. cam. ac. uk/- awm22/publications/moore2005discriminators. pdf.
  • 2Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: A statistical signature-based approach to IP traffic elassification[C]// the 4^th ACM SIGCOMM Conference on Internet Measurement. Taormina, Sicily, Italy: ACM, 2004 : 135-148.
  • 3Erman J, Mahanti A, Arlitt M. Internet traffic identification using machine learning[C]//the 49th IEEE Global Telecommunications Conference (GLOBECOM 2006). USA: IEEE Computer Society, 2006 : 1-6.
  • 4Zander S, Nguyen T, Armitage G. Self-learning IP traffic classification based on statistical flow characteristics[C]//the Passive and Active Network Measurement Workshop (PAM) 2005, USA : Springer, 2005: 325-328.
  • 5Lan K, Heidemann J. A measurement study of correlations of internet flow characteristics [J]. Computer Networks, 2006, 50(1) :46-62.
  • 6Crovella M E, Taqqu M S, Bestavros A. Heavy-Tailed Probability Distributions in the World Wide Web[M]. Cambridge, MA, USA: Birkhauser Boston Ine, 1998: 3-25.
  • 7Antoniou I, Ivanov V V, Ivanov Valery V, etal. On the lognormal distribution of network traffic[J]. Physica D: Nonlinear Phenomena, 2002, 167(1-2):72-85.
  • 8Christopher J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2:121-167.
  • 9陈楚,许勇,张凌.重尾分布对网络流量性质的影响[J].计算机应用,2009,29(6):1520-1522. 被引量:8

二级参考文献12

  • 1LELAND W E, TAQQU M S, WILLINGER W, et al. On the self- similar nature of Ethernet traffic (extend version) [ J]. IEEE/ACM Transactions on Networking, 1994, 2(1) : 1 - 15.
  • 2PARK K, WILLINGER W. Self-similar network traffic and performance evaluation [ M]. New York: John Wiley & Sons, 2000.
  • 3TAQQU M S, WILLINGER W, SHERMAN R. Proof of a funda - mental result in self-similar traffic modeling [ J]. Computer Communication Review, 1997, 27(2) : 5 -23.
  • 4PATRICE A, RICHARD B, PATRICK F, et al. The muhiscale nature of network traffic discovery, analysis, and modeling [ J]. IEEE Signal Processing Magazine, 2002, 19(3): 28 -46.
  • 5SHRIRAM S, RUDOLF R, RICHARD B. Network and user driven alpha-beta on-off source model for network traffic [ J]. Computer Network, 2005, 48(3): 335-350.
  • 6KORN F, MUTHUKRISHNAN S, WU YI-HUA. Modeling skew in data streams [ C]// SIGMOD 2006. Chicago: ACM, 2006:181 - 192.
  • 7DOWNEY A B. Lognormal and parelo distributions in the Internet [J]. Computer Communications, 2005, 28(7): 790-801.
  • 8PARK K, WILLINGER W. Self-similar network traffic and performance evaluation [ M]. New York: John Wiley & Sons, 2000.
  • 9TAQQU MS, TEVEROVSKY V, WILLINGER W. Is the Ethernet data self-similar or multifractal? [ J]. Fractals, 1997, 5 (1) : 63 - 73.
  • 10PAXSON V. Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic[J]. ACM SIGCOMM Computer Communication Review, 1997, 27(5) : 5 - 18.

共引文献7

同被引文献20

  • 1黄丽莹,韦岗,姜胜明.使用定向天线的骨干无线网格网络容量研究[J].计算机应用,2007,27(6):1306-1309. 被引量:2
  • 2GUO W, WANG S, CHU X, ZHANC J, CHEN J, SONG H. Automated small-cell deployment for heterogeneous cellular networks [J]. IEEE Communications Magazine, 2013, 51(5): 46-53.
  • 3HE C, ZHANG S, CHEN Y, XU S. Architecture design and performance evaluation for fu- ture green small cell wireless networks [C]//IEEE International Conference on Communications, 2013: 1178-1182.
  • 4SIMSEK M, BENNIS M, DEBBAH M, CZYLWIK A. Rethinking offioad: how to intelligently combine WiFi and small cells [C]//IEEE International Conference on Communications, 2013: 5204-5208.
  • 5NI W, COLLINGS I B. A new adaptive small-cell architecture [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(5): 829-839.
  • 6WANG L, FENG X, WANG X~ GAN X. A user-centric load balance scheme for small cell networks [C]//International Conference on Wireless Communications and Signal Processing (WCSP), 2014: 1-6.
  • 7SUN Y, Xu X, ZHANG R, GAO R. Offioading based load balancing for the small cell heteroge- neous network IC]//International Symposium on Wireless Personal Multimedia Communications (WPMC), 2014: 288-293.
  • 8KOPPENBORG J, HALBAUER H, SAUR S, HOEK C. 3D beamforming trials with an active antenna array [C]//International ITG Workshop on Smart Antennas (WSA), 2012: II0-I14.
  • 9PAN L, CHI Z, FANG Y. The capacity of wireless Ad Hoc networks using directional antennas [J]. IEEE Transactions on Mobile Computing, 2011, 10(10): 1374-1387.
  • 10HALBAUER H, SAUR S, KOPPENBORG J, HOEK C. 3D beamforming: performance improvement for cellular networks IJ]. Bell Labs Technical JournM, 2013, 18(2): 37-56.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部