期刊文献+

引入控制函数的非线性扩散图像去噪

A Nonlinear Diffusion with Introduction of Control Functions on Image Denoising
在线阅读 下载PDF
导出
摘要 关于图像获取过程中的优化问题,为了克服传统非线性扩散图像去噪模型的不足,有效去除图像噪声,提出了引入两项构造的控制函数。利用局部背景方差信息构造ε方向扩散控制函数以更好区分边缘和噪声,并对边缘区域内,边缘区域间及不同背景下的噪声采取各自适合的扩散策略;采用局部背景亮度信息构造η方向扩散控制函数以加速区域内平滑,消除"块效应",约束去噪图像更逼近原图。理论分析和实验结果均表明,算法模型既能较好保持图像的边缘结构,又能充分抑制噪声,并对视觉效果和峰值信噪比值上都具有明显优势。 In order to overcome the disadvantages of traditional nonlinear-diffusion-based image denoising methods,two control functions are constructively proposed to denoise image effectively.Using the information of local background variance,a ε-direction diffusion controlled function is constructed to have a better distinction between edge and noise,and adopt suitable diffusion strategy to the noise in inter-edge-region and intra-edge-region with different backgrounds respectively.Using the information of local background brightness,a η-direction diffusion controlled function is constructed to accelerate the inter-edge-region smoothing and eliminate "blocking effect",so that the denoising picture is more approaching to the original one.Theoretical analysis and experimental results demonstrate that the new algorithm model can both restrain noise better and hold edge structure fully,as well as eliminate "blocking effect" efficiently,and there is superiority in the visual effects and peak signal noise ratio.
作者 郭静 田有先
出处 《计算机仿真》 CSCD 北大核心 2010年第12期237-240,共4页 Computer Simulation
基金 重庆市科委基金项目(CST2005BB0061) 重庆市科委基金项目(KJ070514)
关键词 图像去噪 非线性扩散 局部背景方差 局部背景亮度 视觉系统 Image denoising Nonlinear diffusion Local background variance Local background brightness Visual system
  • 相关文献

参考文献8

  • 1P Perona,J Malik.Scale space and edge detection using anisotropic diffusion[J].IEEE Trans on PAMI,1990,12(7):629-639.
  • 2贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 3钱惠敏,茅耀斌,王执铨.基于各向异性扩散的几种平滑算法比较及改进[J].南京理工大学学报,2007,31(5):605-611. 被引量:13
  • 4陈一虎,叶正麟.一种改进的各向异性扩散图像去噪方法[J].计算机工程与应用,2008,44(13):170-172. 被引量:14
  • 5L Lucido,et al.Research on numerical schemes of partial differential equations in image processing[R].Valbonne:INRIA,Sophia Antipolis Research Center:1997.3132.
  • 6G L Anderson,A N Netravali.Image restoration based on a subjective criterion[J].IEEE Transactions on System,Man,and Cybernetics,1976,SMC-6:845-853.
  • 7A K Katsaggelos,et al.A regularized iterative image restoration algorithm[J].IEEE Transaction on Signal Processing,1991,39(4):914-929.
  • 8S A KaruIlasekera,N G Kingsbury.A distortion measure for blocking artifacts in images based on human visual sensitivity[J].IEEE Transactions on Image Processing,1995,4(6):713-724.

二级参考文献39

  • 1谢美华,王正明,谢华英.图像去噪的偏微分方程模型的最优参数选取[J].遥感技术与应用,2005,20(2):261-265. 被引量:8
  • 2You Yu-li,Kaveh M.Fourth-order partial differential equations for noise removal[J].IEEE Transactions on Image Processing,2000,9 (10) : 1723-1730.
  • 3Catte F,Lions P L,Morel J M,et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992,29(2): 182-193.
  • 4You Yu-li,Kaveh M.Blind image restoration by anisotropic regularization[J].IEEE Transactions on Image Processing, 1999,8 (3) : 396-407.
  • 5CHEN Yun-mei,Bose P.On the incorporation of time-delay regularization into curvature-based diffusion[J].Journal Mathematical Imaging and Vision,2004, 14: 149-164.
  • 6Anderson G L,Netravali A N.Image restoration based on a subjective criterion[.1].IEEE Transaction systems.Man and Cyberneties, 1976, CMC-6(12) : 845-853.
  • 7Karunasekera S A,Kingsbury N G.A distortion measure for blocking artifacts in images based on human visual sensitivity[J]. IEEE Transactions on Image Processing, 1995,4(6) : 713-724.
  • 8Shib A C C,Liao Hong-yuan M,Lu Chun Shien.A new iterated two-band diffusion equation:theory and its application[J].IEEE Transaction on Image Processing, 2003,12(4) : 466-476.
  • 9Pollak I,Willsky A S,Krim H.Image segmentation and edge enhancement with stabilized inverse diffusion equations[J].IEEE Transaction on Image Processing, 2000,9(2) : 256-266.
  • 10Weiekert J.A review of nonlinear diffusion filtering [C]//Leeture Notes in Computer Science:Scale-Space Theory in Computer Vision.Berlin : Springer, 1997,1252 : 3-28.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部