期刊文献+

一种快速分层递阶DSmT近似推理融合方法(A) 被引量:18

A Fast Approximate Reasoning Method in Hierarchical DSmT(A)
在线阅读 下载PDF
导出
摘要 本文提出了一种分层递阶的DSmT快速近似推理融合方法,该方法针对超幂集空间中仅单子焦元具有信度赋值的情况,利用二叉树或三叉树分组技术对其刚性分组,与此同时,对每个信息源对应的各个分组焦元进行信度赋值求和,以便实现细粒度超幂集空间向粗粒度超幂集空间映射.然后运用DSmT组合规则和比例冲突分配规则对粗化超幂集空间的两个信息源进行融合,保存该融合结果作为父子之间节点连接权值,然后对每个分组焦元信度赋值归一化处理,通过设定树的深度,来确定分层递阶的次数.最后通过从多个角度比较新、老方法,从而充分地验证了新方法的优越性. A kind of fast approximate reasoning method in hierarchical DSmT is proposed.This method is only fit for the case that there are only singleton focal elements with assignments in hyper-power set.These focal elements in hyper-power set are forced to group through bintree or tritree technologies.At the same time,the assignments of focal elements in these different groups corresponding to each source are added up respectively,in order to realize the mapping from the refined hyper-power set to the coarsened one.And then,two sources with the coarsened hyper-power set are combined together according to DSmC(Classical DSm combination rule) and PCR5(Proportional conflict redistribution No.5).The fused results from different groups will be saved as the connecting weights between father and children nodes.And then,all assignments of focal elements in different groups will be normalized respectively.Tree depth is set,in order to decide the iterative times in hierarchical system.Finally,by comparing new method with old one from different views,the superiority of new one over old one is testified well.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第11期2566-2572,共7页 Acta Electronica Sinica
基金 国家自然科学基金(青年基金)(No.60804063 No.60805032) 江苏省自然科学基金(No.BK2010403) 图像信息处理与智能控制教育部重点实验室开放基金(No.200902) 东南大学创新基金(No.3208000501) 航空科学基金(No.20100169001)
关键词 近似推理 信息融合 分层递阶 Dezert-Smarandache THEORY approximate reasoning information fusion hierarchical Dezert-Smarandache Theory(DSmT)
  • 相关文献

参考文献13

二级参考文献53

  • 1邵远,何发昌,罗志增.多传感器信息融合浅析[J].电子学报,1994,22(5):73-79. 被引量:28
  • 2叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术,2006,28(7):1014-1016. 被引量:33
  • 3郭华伟,施文康,刘清坤,邓勇.一种新的证据组合规则[J].上海交通大学学报,2006,40(11):1895-1900. 被引量:57
  • 4Smarandache F, Dezert J. (eds.). Advances and Applications of DSmT for Information Fusion, Vol.1 &= Vol.2, Rehoboth: American Research Press, 2004 & 2006, http://fs.gallup.unm.edu//DSmT.htm.
  • 5Dezert J, Smarandache F. A new probabilistic transformation of belief mass assignment. In Proc. Fusion 2008, Cologne, Germany, June 30-July 3, 2008.
  • 6Li X, Huang X, Dezert J. Smarandache F. Enrichment of qualitative beliefs for reasoning under uncertainty. In Proc. Fusion 2007, Quebec, Canada, July 9-12, 2007.
  • 7Herrera F, Martfnez L. A 2-Tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Systems, 2000, 8(6): 746- 752.
  • 8Herrera F, Martlnez L. The 2-Tuple linguistic computational model. Advantages of its linguistic description, accuracy and consistency. Int. J. Uncertain., Fuzz. Knowl.-Based Syst., 2001, 9(Suppl.): 3349.
  • 9Herrera F, Martfnez L. A model based on linguistic 2-Tuples for dealing with multi-granular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, 2001, 31(2): 227-234.
  • 10Herrera F, Herrera-Viedma E, Martfnez L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans. Fuzzy Systems, 2008, 16(2): 354-370.

共引文献304

同被引文献212

引证文献18

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部