期刊文献+

基于WTMM与多重分形的信号毛刺去除方法 被引量:1

An outlier removal method based on WTMM and multifractal
在线阅读 下载PDF
导出
摘要 信号检测和分析经常受到毛刺的干扰,因此有必要将其去除.小波变换作为一种理想的时频分析方法,能够对信号进行多尺度或多分辨率分析,从不同层次把握信号的特征信息,为此提出了一种基于小波变换模极大值与多重分形的信号毛刺去除方法,分别利用多重分形谱、局部有效Hlder指数实现毛刺的检测与定位,进而实现毛刺的去除.实验证明,这种方法是可行和有效的,为非平稳随机信号中的毛刺去除提供了一种行之有效的方法. Outliers often interfere with signal detection and during analyzing processes and must therefore be removed.As an ideal time-frequency analysis method the wavelet transform provides a multiscale(or multiresolution)signal analysis and captures the characteristic information at different levels.An outlier removal method based on WTMM and multifractal was thus presented,which utilized multifractal spectrum and the local effective Hlder exponent to detect and localize outliers respectively,so as to eventually remove then.Experimental results show that the proposed method is feasible and valid,and additionally,it provides an effective method for outlier removal in nonstationary stochastic signals.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第11期1142-1147,共6页 JUSTC
基金 国家自然科学基金(60872163)资助
关键词 小波变换模极大值 多重分形 毛刺 Hlder指数 WTMM multifractal outlier Hlder exponent
  • 相关文献

参考文献11

  • 1Lucas A. Asymptotic robustness of least median of squares for autoregressions with additive outliers[J]. Communications in Statistic- Theory and Methods, 1997, 26(10): 2 363-2 380.
  • 2胡松,江小炜,杨光,杨晓非.滑动平均滤波在微弱脉冲信号检测中的应用[J].计算机与数字工程,2007,35(10):169-171. 被引量:46
  • 3Sardy S, Tseng P, Bruce A. Robust wavelet denoising [J]. IEEE Transactions on Signal Processing, 2001, 49(6): 1 146-1 152.
  • 4Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(4): 679-714.
  • 5Arneodo A, Bacry E, Muzy J F. The thermodynamics of fractals revisited with wavelets [J]. Physica A, 1995, 213(1-2) : 232-275.
  • 6Mandelbort B B. The Fractal Geometry of Nature[M]. New York:Freeman, 1982.
  • 7黄子俊,陈允平.基于小波变换模极大值的输电线路单端故障定位[J].电力自动化设备,2005,25(2):10-14. 被引量:51
  • 8Mallat S, Zhong S. Characterization of signals from multiscales edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (7): 710-732.
  • 9Shimizu Y, Barth M, Windischberger C, et al. Wavelet-based multifractal analysis of fMRI time series [J]. NeuroImage, 2004, 22(3): 1 195-1 202.
  • 10Struzik Z R, Siebes A P J M. Outlier detection and localization with wavelet based multiIractal formalism [R]. Technical Report, INS-R0008, 2000.

二级参考文献10

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2DOMMEL H W, MICHELS J M. High speed relaying using travelling wave transient analysis[A]. IEEE PES Winter Power Meeting[C]. [s.l.] :IEEE, 1978. 1-7.
  • 3JOHNS A T,SALMAN S K. Digital protection for power systems [ M ]. London: Peter Peregrinus Ltd. E., 1995.
  • 4MALLAT S,HWANG W L. Singularity detection and processing with wavelets[J]. IEEE Trans. on Information Theory, 1992,38(2) :617 - 643.
  • 5MAGNAGO F H,ABUR A. Fault location using wavelets[J]. IEEE Trans. on Power Delivery, 1998,13(4): 1475-1480.
  • 6ABUR A,MAGNAGO F H. Use of delays time between model components in wavelet based fault location [J].Electrical Power and Energy Systems,2000,22(6):397 - 403.
  • 7HUANG Zi-jun,CHEN Yun-ping,GONG Qing-wu. A protection and fault location scheme for EHV line with series capacitor based on travelling waves and wavelet analysis[A]. IEEE-PES/CSEE International Conf. on Power System Technology [ C ]. Kunming,China :Yunnan Science and Technology Press, 2002. 290- 294.
  • 8James H.McClellan,Ronald W.Schafer,Mark A.Yoder.信号处理引论[M].电子工业出版社,2005
  • 9董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(4):76-80. 被引量:218
  • 10章正宇,眭晓林.激光测距弱信号数字相关检测技术的研究和仿真[J].中国激光,2002,29(7):661-665. 被引量:53

共引文献95

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部