期刊文献+

一种基于区间数的扩展FCM聚类算法 被引量:4

An Extended FCM Clustering Algorithm Based-on Interval Numbers
在线阅读 下载PDF
导出
摘要 在区间值数据的聚类算法中,区间数之间的距离大多仅考虑两区间数的上下界值,其最大缺陷在于所定义的距离不满足视觉合理性。因此,区间值数据的聚类很难用传统的FCM方法。为了解决这个问题,本文引入了一种新的区间数的距离测度,扩展了一种可直接处理特征空间为区间数的聚类问题的FCM聚类算法。通过对比分析表明,该算法更具合理性及有效性。 In the interval-valued data clustering algorithm,the distance between interval numbers mostly consider the upper and lower bounds value,the biggest defect is that the defined distance does not meet the visual rationality.Therefore,it is difficult to use traditional fuzzy C-means(FCM) to the interval-valued data clustering.In order to solve the problem,a new distance measure for interval numbers was introduced,and FCM clustering algorithm was extended to deal directly with the clustering problem of feature space denoted by interval numbers.By comparing with the traditional method,this method is more effective,more accurate,and more accordant to practice.
出处 《化工自动化及仪表》 CAS 北大核心 2010年第8期26-29,共4页 Control and Instruments in Chemical Industry
关键词 区间数 聚类算法 距离测度 FCM interval numbers clustering algorithm distance measure FCM
  • 相关文献

参考文献13

  • 1LEUNG Y,FISCHER M M,WU Wei-zhi,et al.A Rough Set Approach for the Discovery of Classification Rules in Interval-Valued Information Systems[J].International Journal d Approximate Reasoning,2008,47:233-246.
  • 2YANG Xi-bei,YU Dong-jun,YANG Jing-yu,et al.DominanceBased Rough Set Approach to Incomplete Interval-valued InforEast China University of Science and Technology,Shanghai 200237,China)marion System[J].Data & Knowledge Engineering,2009,7:1-17.
  • 3于春海,樊治平.一种基于区间数多指标信息的FCM聚类算法[J].系统工程学报,2004,19(4):387-393. 被引量:13
  • 4于春海,樊治平.一种基于区间数多指标信息的聚类方法[J].东北大学学报(自然科学版),2004,25(2):183-186. 被引量:9
  • 5郭海湘,诸克军,贺勇,陈希.基于模糊聚类和粗糙集提取我国经济增长的模糊规则[J].管理学报,2005,2(4):437-440. 被引量:9
  • 6PIERPAOLO D' Urso,GIORDANIB P.A Weighted Fuzzy cMeans Clustering Model for Fuzzy Data[J].Computational Statistics & Data Analysis,2006,50:1496-1523.
  • 7FRANCISCO de A T de Carvalho.Fuzzy c-Means Clustering Methods for Symbolic Interval Data[J].Pattern Recognition Letters,2003,28:423-437.
  • 8BEZDEK J C,NIKHIL R P.Cluster Validation with Generalized Dunn's Indices[C]//Proceedings of the 2nd New Zealand Two-stream International Conference on Artificial Neural Networks and Expert Systems.New Zealand:IEEE Press,1995:190-193.
  • 9MA Li,STAUNTON R C.Amodified Fuzzy C-Means Image Segmentation Algorithm for Use with Uneven Illumination Patterns[J].Pattern Recognition,2007,40:3005-3011.
  • 10SENGUPTA A,TAPAN K P.On Comparing Interval Numbers[J].European Journal of Operational Research,2000,127:28-43.

二级参考文献52

共引文献44

同被引文献55

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部