期刊文献+

信号频率的卷积窗优化新算法

New Optimal Algorithm for Signal Frequency Based on Convolution Window
在线阅读 下载PDF
导出
摘要 为提高经典频谱校正算法的测频精度,给出了基于卷积运算构造新窗函数的方法,并提出考虑负频谱响应的优化新算法。采用优化新算法对基波频率在工频信号周围变化的谐波信号进行频率测量研究,结果表明,新算法可以实现信号频率的高精度测量,测频精度最高可达nHz数量级;同时,新窗函数与新算法的有效结合可优势互补,具有广泛的应用前景。 To enhance the accuracy of frequency measurement of classical spectrum correction algorithm,the method of recreating window function based on convolution operation is given,and the new optimal algorithm considering negative spectrum response is proposed.By adopting new optimal algorithm,the frequency measurement of harmonic signals that the fundamental frequency changing around the industrial frequency is researched.The result shows that the new algorithm can implement frequency measurement with high accuracy,the highest accuracy may reach nHz;in addition,the effective combination of new window function and new algorithm is complementary in superiorities and offering wider applicable prospects.
出处 《自动化仪表》 CAS 北大核心 2010年第11期17-20,共4页 Process Automation Instrumentation
关键词 频率检测 频谱校正 优化算法 卷积窗 频谱泄露 谐波信号 Frequency detection Spectrum correction Optimal algorithm Convolution window Spectrum leakage Harmonic signal
  • 相关文献

参考文献8

  • 1丁康,谢明,杨志坚.离散频谱校正理论与技术[M].北京:科学出版社,2007.
  • 2Belega D,Dallet D.Frequency estimation via weighted multipoint interpolated DFT[J].IEEE Sci.Mess.Teehnol.,2008,2(1):1-8.
  • 3陈奎孚,王建立,张森文.低频成分的频谱校正[J].振动工程学报,2008,21(1):38-42. 被引量:16
  • 4温和,滕召胜,郭斯羽,王璟珣,杨步明,王一,陈桃.Hanning自卷积窗函数及其谐波分析应用[J].中国科学(E辑),2009,39(6):1190-1198. 被引量:15
  • 5张介秋,梁昌洪,陈砚圃.一类新的窗函数——卷积窗及其应用[J].中国科学(E辑),2005,35(7):773-784. 被引量:33
  • 6阳明盛,罗长童.最优化原理、方法及求解软件[M].武汉:华中理工大学出版社,2005.
  • 7Tomas R,Pedro M.New spectrum leakage correction algorithm for frequency estimation of power system signals[J].IEEE Trans.Instrum.Mess.,2008,57(5):1670-1679.
  • 8Radii T,Ramos M,Serra A.Frequency estimation of power system signals using a new spectrum leakage correction algorithm[J].IEEE MTC.Victoria,BC,Canada,2008,25(3):2161-2166.

二级参考文献64

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部