期刊文献+

量子隐形传态的类簇态信道方案(英文) 被引量:3

Quantum Teleportation with Linear Cluster-class States
在线阅读 下载PDF
导出
摘要 提出了利用一个四粒子类簇态来实现一个任意两粒子态的隐形传送方案.如果接受者能根据发送者提供的测量信息对量子态实施一个合适的幺正变换,那么隐形传送就能以一定的概率实现.由于该方案中充当量子信道的是部分纠缠态,因此该方案比以前基于最大纠缠态的方案更具有现实意义.同时研究导出一个重要的结论:可以从一个四粒子类簇态(部分纠缠态)中以一定的概率提取出一个四粒子簇态(最大纠缠态),这个概率等于成功隐形传态的概率. A scheme for teleportation of an arbitrary two-qubit state using a four-qubit linear cluster-class state is proposed.Quantum teleportation can be successfully realized with a certain probability if the receiver can adopt an appropriate collective unitary transformation after receiving the sender's Bell-state measurement information.The scheme is more practical than previous ones using maximally entangled states as the quantum channel.In addition,an important conclusion is obtained from the above scheme that a maximally four-qubit entangled state(cluster state)is extracted from a single copy of the cluster-class state with the same probability as the teleportation.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第10期1800-1805,共6页 Acta Photonica Sinica
基金 Supported by the Youth Talent Foundation of Anhui Province(2010SQRL146) the Anhui Provincial NaturalScience Research Project of University(KJ2010B106)
关键词 量子光学 隐形传态 cluster态 BELL态测量 幺正变换 Quantum optics Teleportation Cluster-class state Bell-state measurement Unitary transformation
  • 相关文献

参考文献30

  • 1NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press,2000: 528-607.
  • 2蔡新华,聂建军,郭杰荣.单光子纠缠态的纠缠转移和量子隐形传态(英文)[J].光子学报,2006,35(5):776-779. 被引量:24
  • 3PAN Jian-wei, BOUWMEESTER D, MATTEW D, et al. Experimental test of quantum nonlocality in three-photon Greenberger- Horne-Zeilinger entanglement[J]. Nature, 2000, 403(2): 515-519.
  • 4RAUSSENDORF R, BRIEGEL H J. A one-way quantum computer[J]. Phys Rev Lett, 2001, 86(22): 5188-5191.
  • 5BRIEGEL H J, RAUSSENDORF R. Persistent entanglement in arrays of interacting particles[J]. Phys Rev Lett, 2001, 86(5): 910-913.
  • 6GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell′s theorem without inequalities [J]. Am J Phy, 1990, 58(12): 1131-1143.
  • 7DR W, BRIEGEL H J. Stability of macroscopic entanglement under decoherence[J]. Phys Rev Lett, 2004, 92(18): 180403-180407.
  • 8SCARENI V, ACIN A, SCHENCK E, et al. Nonlocality of cluster states of qubits[J]. Phys Rev A, 2005, 71(4): 042325-042330.
  • 9SCHLINGEMANN D, WERNER R F. Quantum error-correcting codes associated with graphs[J]. Phys Rev A, 2001, 65(1): 012308-012315.
  • 10MANDELL O, GREINER M, WIDERA A, et al. Controlled collisions for multi-particle entanglement of optically trapped atoms[J]. Nature, 2003, 425(10): 937-940.

二级参考文献6

共引文献46

同被引文献41

  • 1黄春佳,贺慧勇,周明,方家元,黄祖洪.光场与纠缠双原子相互作用过程中的熵演化特性[J].物理学报,2006,55(4):1764-1768. 被引量:17
  • 2吴克栋,曹万强.非均匀磁场作用下四量子比特海森堡自旋链中的热纠缠[J].湖北大学学报(自然科学版),2007,29(1):40-43. 被引量:2
  • 3BARROW J D.Science and ultimate reality:quantum theory,cosmology and complexity[M].Cambridge:Cambridge University Press,2004.
  • 4HAWKING S,MLODINOW L.The grand design[M].USA:Bantam Books,2010.
  • 5赵凯华,罗蔚茵.量子物理-新概念物理教程[M].北京:高等教育出版社,2008.
  • 6FEYNMAN R,LEIGHTON R B,SANDS M.The feynman lectures on physics Vol 3[M].New Jersey:Addison-Wesley,1963.
  • 7BELL J S.Speakable and unspeakable in quantum mechanics[M].Cambridge:Cambridge University Press,1987.
  • 8CLAUSER F,HORNE M,SHIMONY A,et al.Proposed experiment to test local hidden-variable theories[J].Physical Review Letters,1969,23(15):880.
  • 9ASPECT A,DALIBARD J,ROGER G.Experimental test of bell′s inequalities using time- varying analyzers[J].Physical Review Letters,1982,49(25):1804-1807.
  • 10HORNE M,SHIMONY A,ZEILINGER A.Two-particle interferometry[J].Nature,1990,347:429-430.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部