期刊文献+

直角坐标系下的雷达跟踪滤波算法分析 被引量:6

Analysis of Radar Tracking Algorithms in Cartesian Coordinate System
在线阅读 下载PDF
导出
摘要 在直角坐标下,目标的运动模型能较好地描述,一般认为能得到更高的滤波精度。文中对直角坐标系下的修正无偏转换测量卡尔曼滤波(MUCMKF)、扩展卡尔曼滤波(EKF)、无迹滤波(UF)算法进行了总结分析,并对它们的初始协方差矩阵设置给出了建议,以使滤波器快速收敛。最后,通过实验,对几种方法的性能进行了比较。结果表明,在较大的测量误差下,UF、MUCMKF的性能明显好于EKF。 It's generally accepted that tracking in cartesian coordinates is more accurate because the object motions are easier described in cartesian coordinate than in spherical coordinate.Therefore,three cartesian coordinate algorithms which named modified unbiased converted measurement Kalman filter(MUCMKF),extended Kalman filter(EKF),and unscented filter(UF) respectively are investigated together.Additionally,the initialization value of estimated covariance matrixes is proposed to ensure the filters convergence quickly.Finally,experiments are carried out to evaluate the algorithms' performance and results indicate that UF and MUCMKF have distinct superiority over EKF when measurement error is high.
出处 《现代雷达》 CSCD 北大核心 2010年第10期33-36,共4页 Modern Radar
关键词 修正无偏转换测量卡尔曼滤波 扩展卡尔曼滤波 无迹滤波 modified unbiased converted measurement kalman filter extended kalman filter unscented filter
  • 相关文献

参考文献7

  • 1Brunet-Crespin M. Muhisensor tracking systems: coordinate system choice influence[C l// Proc. Int. Conf. Radar, Soc. Electr. & Electron. Paris France:IEEE Press, 1994.
  • 2Zollo S, Ristic B. On the choice of the coordinate system and tracking filter for tracking-while-scan mode of an airborne pulse Doppler radar [ R ]. Technical Report : DSTOTR-0926, Electronics and Surveillance Research Laboratory, Salisbury, South Australia, Australia, 1999.
  • 3Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurement versus EKF[ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29 (3) : 1015 - 1022.
  • 4Mo Longbin, Song Xiaoquan, Zhou YiyU, et al. Unbiased convened t for tracking [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3):1023 -1027.
  • 5Duan ZhangSheng, Han ChongZhao, Li XiaoRong. Comment on unbiased converted measurement for tracking[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4) : 1374 - 1377.
  • 6Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in illters and estimators [ J ]. IEEE Trans. Automat. Contr. , 2000,45(3), pp. 477-482.
  • 7Julier S J, Uhlmann J K. The scaled unscented transformation[ C ]// In IEEE American Control Conference. Anchorage AK, USA : IEEE Press, 2002.

同被引文献31

  • 1杨婷娅,陆振宇,顾松山,肖冬荣,陈金辉.WK混合滤波算法在雷达数据处理中的应用[J].重庆大学学报(自然科学版),2005,28(2):59-61. 被引量:2
  • 2程之刚,黎湘,庄钊文.一种雷达网系统误差校正方法[J].现代雷达,2005,27(11):43-47. 被引量:7
  • 3胡振涛,楚艳萍,刘先省.测量方差自适应的多传感器数据融合算法[J].红外与激光工程,2005,34(6):741-746. 被引量:12
  • 4吴小飞,王永诚.用最小平方法实现多部雷达数据配准[J].现代雷达,1996,18(6):28-33. 被引量:11
  • 5何友,王国宏,陆大幺金,等.传感器信息融合及其应用[M].2版.北京:电子工业出版社,2000.
  • 6Poison N G, Stroud J R, Muller P. Practical filtering with se- quential parameter learning[ J]. Journal of the Royal Statis- tical Society : Series B ( Statistical Methodology ), 2008,70 (2) :413-428.
  • 7Bihk I, Tabrikian J. MMSE-based filtering in presence of non-Gaussian system and measurement noise [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3) :1153-1169.
  • 8Perakopf F, Bouchaffra D. Genetic-based em algorithm for learning gaussian mixture models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 8 ) : 1344-1348.
  • 9Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models [ J ]. IEEE Transactions Pattern Anaysis and Machine Intelligence, 2002,24(3 ), 1-16.
  • 10Bergman N, Doucet A, Gordon N. Optimal estimation and cramer-rao bounds for partial non-guassian state space mod- els[J]. Annal of the institute of Statistical Mathematics, 2001,53(1), 97-112.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部