期刊文献+

基于侧距的关联函数构造及应用 被引量:5

Construction and Application of Dependent Function Based on Lateral Distance
在线阅读 下载PDF
导出
摘要 探讨了用可拓学的关联函数解决网络攻击识别的方法.根据问题域的需要以及侧距的定义,给出基于侧距的位值公式的具体形式;并在此基础上建立了有公共端点的基于侧距的关联函数;分析了最优点发生在左公共端点处的关联函数的性质;以蠕虫病毒识别为例给出了其应用,验证了结论的正确性. Recognition of network attacks by means of dependent function of extenics is discussed.The formula of the location value is presented in view of the need of problem domain and the definition of lateral distance.The expression of dependent function based on lateral distance with common terminal endpoints is constructed.Meanwhile,the properties of the dependent function in which the optimal point occurs at the left common endpoint are analyzed.As an application of the dependent function,recognition of worm is taken to justify the function.
出处 《南通大学学报(自然科学版)》 CAS 2010年第2期9-13,共5页 Journal of Nantong University(Natural Science Edition) 
基金 南通市应用研究计划项目(K2008038 K2009055) 南通大学自然科学基金项目(08Z034)
关键词 可拓学 侧距 关联函数 蠕虫识别 extenics lateral distance dependent function worm recognition
  • 相关文献

参考文献8

  • 1徐慧,戚涌,张宏,刘凤玉.模糊入侵识别引擎的研究与设计[J].计算机科学,2004,31(7):87-90. 被引量:1
  • 2Toosi A N,Kahani M.A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers[J].Computer Communications,2007,30(10):2201-2212.
  • 3Bridges S M,Vaughn R B.Fuzzy data mining and genetic algorithms applied to intrusion detection[C] //Proceedings 23rd National Information Systems Security Conference.Baltimore,Oct.16-19,2000:13-31.
  • 4Lemos R.Fast-spreading code is weapon of choice for net vandals[EB/OL].(2001-03-15)[2009-08-10].http://news.comcom/Year+of+the+Worm/2009-1001_3254061.html?tag=st.rn#.
  • 5国家计算机网络入侵防范中心.国家计算机网络入侵防范中心网络安全分析报告(2004年1-5月)[EB/OL].(2004-06-03)[2009-08-10].http://www.cert.org.cn/articles/statistic/common/2004060321713.shtml.
  • 6张新宇,卿斯汉,李琦,李大治,何朝辉.一种基于本地网络的蠕虫协同检测方法[J].软件学报,2007,18(2):412-421. 被引量:25
  • 7Ellis D,Aiken J,Attwood K,et al.A Behavioral approach to worm detection[C] //Proc,of ACM Workshop on Rapid Malcode (WORM),New York:ACM Press,2004:43-53.
  • 8谢丰,孟庆发.蠕虫预警技术研究与进展[J].计算机应用研究,2006,23(10):14-16. 被引量:5

二级参考文献38

  • 1[2]Bridges S M,Vaughn R B, FUZZY DATA MINING AND GENETIC ALGORITHMS APPLIED TO INTRUSION DETECTION. http:∥www. cs. msstate. edu/~ bridges/papers/nissc2000. pdf
  • 2[3]Dickerson J E,Dickerson J A. Dickerson. 2000. Fuzzy network profiling for intrusion detection [J]. In: Proc. of NAIFIPS 2000. 301~306
  • 3[4]Luo Jianxiong, Bridges S M, Vaughn R B. Jr. Fuzzy Frequent Episodes for Real-Time. http:∥www. cs. msstate. edu/~bridges/papers/fuzzieee-2001. pdf
  • 4[5]何新贵.模糊知识处理的理论与技术[M].国防工业出版社,1999.63~65
  • 5C C Zou,W Gong,D Towsley.On the Performance of Internet Worm Scanning Strategies[R].Electrical and Computer Engineering Department,University of Massachusetts,2003.
  • 6S Singh,C Estan,G Varghese,et al.Automated Worm Fingerprin-ting[C].Proceedings of the 6th Symposium on Operating System Design and Implementation(OSDI),USENIX,2004.45-60.
  • 7C C Zou,L Gao,W Gong,et al.Monitoring and Early Warning for Internet Worms[C].Proceedings of the 10th ACM Conference on Computer and Communications Security(CCS),New York:ACM Press,2003.190-199.
  • 8D Ellis,Aiken,Attwood,et al.A Behavioral Approach to Worm Detection[C].Proceedings of ACM Workshop on Rapid Malcode(WORM),New York:ACM Press,2004.43-53.
  • 9S Stanifor,S Cheung,R Crawford.GrIDS:A Graph Based Intrusion Detection System for Large Networks[C].Proceedings of the 19th National Information Systems Security Conference,1996.
  • 10Niels Provos.A Virtual Honeypot Framework[R].Center of Information Technology Integration,University of Michigan,2003.

共引文献28

同被引文献55

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部