期刊文献+

多视角未标定图像三维测量算法 被引量:2

Three Dimensional Measurement Based on Multi-View Uncalibrated Images
在线阅读 下载PDF
导出
摘要 文中提出了一种针对多视角未定标图像序列的三维测量算法,该算法无须先验信息只需利用多视角图像序列.首先对图像序列进行特征点提取进而得到基础矩阵,然后利用简化的Kruppa方法计算各个视角对应摄像机的内参数,再次通过奇异值分解得到视角间的平移和旋转运动,最后利用已知距离信息进行三维点重建完成三维测量.实验室情形下的实验证明了算法的效果. In this paper, a novel algorithm aiming at solving the problem of uncalibrated image based 3D t is presented. Firstly, feature extraction is done to generate the matching pair and further the fundamental matrix is calculated. Secondly, simplified Kruppa equation is used to obtain the intrinsic parameters corresponding to each view. Thirdly, through using singular value decomposition the translations vector and rotation matrixes between views are acquired. Finally, 3D point reconstruction and t is done by making use of the known distance. Results of experiments in lab environment show the effect of the proposed algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2010年第9期181-185,189,共6页 Microelectronics & Computer
基金 国家自然科学基金项目(60736007)
关键词 三维测量 多角度 自定标 基础矩阵 3D measurement multi-view self-calibration fundamental matrix
  • 相关文献

参考文献7

  • 1陈方,熊智,郁丰,刘建业.基于双摄像机的位姿估计迭代融合算法研究[J].微电子学与计算机,2009,26(5):160-162. 被引量:1
  • 2李健,史进.基于OpenCV的三维重建研究[J].微电子学与计算机,2008,25(12):29-32. 被引量:8
  • 3Lowe D G. Distinctive image features from scale - invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 4Hartley R I, Zisserman A. Multiple view geometry in computer vision[ M]. 2nd ed. Cambridge:Cambridge University Press, 2004.
  • 5Zhong H X, Feng Y P, Pang Y J. An extended system method for consistent fundamental matrix estimation[ M]. Berlin: Lecture Notes in Computer Science, Springer, 2005:350 - 359.
  • 6Lourakis M I A, Deriche R. Camera self- calibration using the singular value decomposition of the fundamental matrix: From point correspondences to 3D Research Report 3748, INRIA Sophia- Antipolis, ts[R] 1999.
  • 7Chandraker M K. Two- view focal length estimation for all camera motion using priors [ EB/OL ]. [ 2009 - 11 - 10 ]. www- cse. ucsd. edu/classes/fa04/cse252c/projects/ manmohan.pdf.

二级参考文献12

  • 1毛剑飞,邹细勇,诸静.改进的平面模板两步法标定摄像机[J].中国图象图形学报(A辑),2004,9(7):846-852. 被引量:44
  • 2仲思东,隋莉斌,张望先.基于空间虚拟点阵的双目视觉测量技术[J].微电子学与计算机,2005,22(4):189-192. 被引量:2
  • 3谢云,杨宜民.自主足球机器人的单目视觉自定位方法[J].微电子学与计算机,2005,22(10):129-132. 被引量:8
  • 4Park J S. Interactive 3D reconstruction from multiple images: a primitive- based approach [J]. Pattern Recognition Letters, 2005,26 (16) : 2558- 2571.
  • 5Intel Corporation. Open source computer vision library reference manual [S]. 2001.
  • 6Pollefeys M, Koch R, Van Gool L. Selfcalibration and metric reconstruetion in spite of varying and unknown internal camera parameters[C]//Proc, of International Conference on Computer Vision. Bombay, India, 1998:90.
  • 7Hartley R I, Zisserman A. Multiple view geometry in computer vision [ M]. USA: Cambridge University Press, 2000.
  • 8Quanand Z, Lan L. Linear n- point camera pose determination[J]. IEEE Trans, Pattern Analysis and Machine intelligence, 1999,21(6) :774 - 780.
  • 9Lowe D G. Fitting parameterized three - dimensional models to images[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(5) :441 - 450.
  • 10Yuan J S C. A general programmatic solution for the determining object position and orientation[J ]. IEEE Trans. Robotics and Automation, 1989,5(2) :129- 142.

共引文献7

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部