期刊文献+

基于贝叶斯网络分类器的船舶柴油机冷却系统故障诊断 被引量:13

Fault diagnosis on cooling system of ship diesel engine based on Bayes network classifier
在线阅读 下载PDF
导出
摘要 针对船舶柴油机冷却系统故障诊断中信息和知识具有随机性和不确定性的特点,提出基于贝叶斯网络分类器的船舶柴油机冷却系统故障诊断的NB贝叶斯网络故障诊断模型和TAN故障诊断模型。研究结果表明:这2种故障诊断模型均可通过不断积累完善训练样本,自动修正网络结构参数和概率分布参数,提高诊断效果;采用这2种故障诊断模型,正判率在80.57%以上。 Due to the randomness and uncertainty of fault diagnosis data from cooling system of ship diesel engine,Naive Bayes(NB) and tree augmented naive Bayes(TAN) diagnostic model on cooling system of ship diesel engine were set up based on Bayes network classifier.The results show that the effectiveness of NB model and TAN model can be enhanced by the self-improvement method.When the training samples are accumulated,these models will modify their structure and probability distribution.The correction rates of the proposed models are higher than 80.57%.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期1379-1384,共6页 Journal of Central South University:Science and Technology
基金 湖南省教育厅优秀青年基金资助项目(08B042)
关键词 船舶柴油机 冷却系统 故障诊断 贝叶斯网络 ship diesel engine cooling system fault diagnosis Bayes network
  • 相关文献

参考文献12

二级参考文献51

  • 1张宏辉,唐锡宽.贝叶斯推理网络在大型旋转机械故障诊断中的应用[J].机械科学与技术(江苏),1996,25(2):43-46. 被引量:12
  • 2毕小平,赵以贤,刘西侠,王普凯,许翔.坦克装甲车辆冷却性能的集成化预测模型[J].兵工学报,2006,27(4):577-582. 被引量:9
  • 3何文山.船舶柴油机[M].北京:人民交通出版社,1997.
  • 4Weir M K.A method for self-determination of adaptive learning rates in back propagation [J].IEEE Trans on Neural Networks, 1991, (4):371-379.
  • 5鄂加强.智能故障及其应用[M].长沙:湖南大学出版社,2006.
  • 6Skaanning C, Jensen F V, Kjzerulff U. Printer Troubleshooting Using Bayesian Networks. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE) 2000,New Orleans, USA, 2000.
  • 7Breese J S, Heckerman D. Decision--Theoretic Troubleshooting: A Framework for Repair and Experiment. In.- Proceedings of the Twelfth Conf.on Uncertainty in Artificial Intelligence. San Francisco. CA: Morgan Kaufmann Publishers, 1996:124~132.
  • 8Wolbrecht E, Ambrosio B D, Passch B, et al.Monitoring and Diagnosis of A Multi--stage Manufacturing Process Using Bayesian Networks. Artificial Intelligence for Engineering, Design and Manufacturing, 2000, 14(2): 53~67.
  • 9Beiser J A,Rigdon S E. Bayes Prediction for the Number of Failures of A Repairable System. IEEE Transactions on Reliability, 1997,46 (2) : 320~ 326.
  • 10Jensen F V. Bayesian Network Basics. AISB Quarterly, 1996,94:9~22.

共引文献234

同被引文献83

引证文献13

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部