期刊文献+

融合灰色预测和HOGI特征的红外目标跟踪方法 被引量:3

Novel IR target tracking method based on the grey prediction and HOGI feature
在线阅读 下载PDF
导出
摘要 针对红外目标跟踪时不能有效提取目标特征这一问题,提出了一种新的红外目标稳健跟踪方法.首先利用灰色模型预测目标位置,然后建立以此预测位置为中心候选目标区域的方向梯度-灰度直方图特征模型,并将此特征引入到Mean Shift算法中,以实现对红外目标的精确跟踪.仿真结果表明了该方法跟踪精度高,在目标出现部分遮挡或全部遮挡时,仍能跟踪目标,确保目标不丢失,体现出该跟踪方法良好的鲁棒性. Generally,the IR target tracking method is unable to extract the IR target's feature effectively during the process of IR target tracking.For solving this problem,a novel and robust IR target tracking method is proposed.The method adopts a Grey Model to predict the target's position firstly,and then constructs the Histogram of Oriented Gradient and Illumination(HOGI) of the candidate target area which centers on the predicted position.Finally,the method incorporates this HOGI feature into Mean Shift and realizes the precise tracking.Experimental results show that the proposed method has an excellent tracking precision.When a part or whole of the target is sheltered,the tracking goes on to make sure the target is not lost,which reflects the robustness of the method.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第4期751-757,共7页 Journal of Xidian University
基金 国家863计划资助项目(2007AA701206)
关键词 灰色模型 方向梯度-灰度直方图特征 均值漂移 目标跟踪 图像处理 grey model HOGI feature mean shift target tracking image processing
  • 相关文献

参考文献11

二级参考文献59

共引文献102

同被引文献46

  • 1冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22
  • 2王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking [J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 4Zhou S K, Chellappa R, Moghaddam B. Visual Tracking and Recognition Using Appearance-adaptive Models for Particle Filters[J]. IEEE Trans on Image Processing, 2004, 13(11) : 1491-1506.
  • 5Perez P, Vermaak J, Blake A. Data Fusion for Visual Tracking with Particles[J]. Proceedings of the IEEE, 2004, 92(3) : 495-513.
  • 6Valtteri T, Pietikainen M. Multi-object Tracking Using Color, Texture and Motion[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Chicago: IEEE, 2007: 1-7.
  • 7Birchfield S. Elliptical Head Tracking Using Intensity Gra-dients and Color Histograms [C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa: IEEE, 1998: 232-237.
  • 8Ido L, Michael L, Ehud R. Tracking by Affine Kernel Transformations Using Color and Boundary Cues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1): 164-171.
  • 9Maggio E, Smeraldi F, Cavallaro A. Adaptive Multi-feature Tracking in a Particle Filtering Framework[J]. IEEE Trans on Circuits and Systems for Video Technology, 2007, 17(10) : 1348-1359.
  • 10Wang X, Tang Z M. Modified Particle Filter-based Infrared Pedestrian Tracking[J]. Infrared Physics and Technology, 2010, 53(4): 280-287.

引证文献3

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部