期刊文献+

基于频繁项集的多标签文本分类算法 被引量:4

Multi-label Text Classification Algorithm Based on Frequent Item Sets
在线阅读 下载PDF
导出
摘要 针对多标签文本分类问题,提出基于频繁项集的多标签文本分类算法——MLFI。该算法利用FP-growth算法挖掘类别之间的频繁项集,同时为每个类计算类标准向量和相似度阈值,如果文本与类标准向量的相似度大于相应阈值则归到相应的类别,在分类结束后利用挖掘到的类别之间的关联规则对分类结果进行校验。实验结果表明,该算法有较高的分类性能。 Aiming at the problem of multi-label text classification,this paper proposes a multi-label text classification algorithm based on frequent item sets.It uses FP-growth algorithm for mining frequent item sets between labels,calculates prototype vector and similarity threshold for each class,if the similarity between prototype vector and text are greater than the corresponding threshold,then classifies the text into corresponding category.After classifying,the association rules between the class are utilized to verify the result of classification.Experimental results show that the algorithm has a higher ability of classification performance.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第15期83-85,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60873100) 山西省自然科学基金资助项目(2009011017-4)
关键词 多标签 相似度 频繁项集 关联规则 multi-label similarity frequent item sets association rules
  • 相关文献

参考文献6

  • 1Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C]//Proc.of European Conf.on Machine Learning.Chemnitz,Germany:[s.n.],1998.
  • 2Schapire R E,Singer Y.Boostexter:A Boosting-based System for Text Categorization[J].Machine Learning,2000,39(2/3):135-168.
  • 3Zhang Mingling,Zhou Zhihua.Multi-label Learning by Instance Differentiation[C]//Proc.of the 22nd AAAI Conference on Artificial Intelligence.Vancouver,Canada:[s.n.],2007.
  • 4姜远,佘俏俏,黎铭,周志华.一种直推式多标记文档分类方法[J].计算机研究与发展,2008,45(11):1817-1823. 被引量:10
  • 5眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法[J].计算机研究与发展,2007,44(8):1293-1300. 被引量:12
  • 6Uden M.Rocchio:Relevance Feedback in Learning Classification Algorithms[C]//Proc.of ACM SIGIR Conference on Research and Development in Information Retrieval.Melbourne,Australia:[s.n.],1998.

二级参考文献37

  • 1姜远,周志华.基于词频分类器集成的文本分类方法[J].计算机研究与发展,2006,43(10):1681-1687. 被引量:22
  • 2薛晓冰,韩洁凌,姜远,周志华.基于多示例学习技术的Web目录页面链接推荐[J].计算机研究与发展,2007,44(3):406-411. 被引量:6
  • 3Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization [J]. Machine Learning, 2000, 39(2/3) : 135-168
  • 4McCallum A. Multi-label text classification with a mixture model trained by EM [C]//Working Notes of the AAAI'99 Workshop on Text Learning. Menlo Park, CA.-AAAI Press, 1999
  • 5Ueda N, Saito K. Parametric mixture models for multilabeled text [C]//Beeker S, Thrun S, Obermayer K. Advances in Neural Information Processing Systems 15 (NIPS'02). Cambridge, MA:MIT Press, 2003:721-728
  • 6De Comite F, Gilleron R, Tommasi M. Learning multi label alternating decision trees from texts and data [C] //Proc of the 3rd Int Conf on Machine Learning and Data Mining in Pattern Recognition (MLDM'03). Berlin: Springer, 2003: 35-49
  • 7Zhang M-L, Zhou Z-H. Multi-label neural networks with applications to functional genomics and text categorization[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(10): 1338-1351
  • 8Zhang M L, Zhou Z-H. ML-kNN: A lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007, 40 (7) : 2038-2048
  • 9Elisseeff A, Weston J. A kernel method for multi-labelled classification [C]//Dietterich T G, Becker S, Ghahramani Z. Advances in Neural Information Processing Systems 14 (NIPS'01). Cambridge, MA: MIT Press, 2002:681-687
  • 10Boutell M R, Luo J, Shen X, et al. Learning multi-label scene classification [J]. Pattern Recognition, 2004, 37(9): 1757-1771

共引文献20

同被引文献25

  • 1陈立孚,周宁,李丹.基于机器学习的自动文本分类模型研究[J].现代图书情报技术,2005(10):23-27. 被引量:9
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:391
  • 3Feng Yazhong, Zhuang Yueting, Pan Yunhe. Music Information Retrieval by Detecting Mood via Computational Media Aesthetics[C]//Proc. of IEEE/WC Int’l Conf. on Web Intelligence. Halifax, Canada: [s. n.], 2003.
  • 4Trohidis K. Multi-label Classification of Music into Emotions[C]// Proc. of the 9th Int’l Conf. on Music Information Retrieval. Philadelphia, USA: [s. n.], 2008.
  • 5Yang Yi-Hsuan, Lin Yu-Ching. A Regression Approach to Music Emotion Recognition[J]. IEEE Trans. on Audio, Speech and Language Processing, 2008, 16(2): 448-457.
  • 6Turnbull D. Semantic Annotation and Retrieval of Music and Sound Effects[J]. IEEE Trans. on Audio, Speech, and Language Processing, 2008, 16(2): 467-476.
  • 7Hu Yajie, Chen Xiaoou, Yang Deshun. Lyric-based Song Emotion Detection with Affective Lexicon and Fuzzy Clustering Method[C]//Proc. of the 10th Int’l Conf. on Music Information Retrieval. Kobe, Japan: [s. n.], 2009.
  • 8Zhang Minling, Zhou Zhihua. Ml-knn: A Lazy Learning Approach to Multi-label Learning[J]. Pattern Recognition, 2007, 40(7): 2038- 2048.
  • 9Boutell M R, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J] . Pattern Recognition, 2004, 37(9):1757-1771.
  • 10Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data[M] //Maimon O, Rokach L. Data Mining and Knowledge Discovery Handbook. Berlin:Springer, 2010:667-686.

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部