期刊文献+

基于动态神经网络支持向量机的FPGA实现 被引量:4

FPGA Implementation of Dynamic Neural Network for Support Vector Machines
在线阅读 下载PDF
导出
摘要 研究了一种基于动态神经网络支持向量机(SVM)的FPGA硬件实现方法.提出了基于动态神经网络的最小二乘支持向量机(LS-SVM)神经网络结构,完成了VHDL语言描述的基于动态神经网络的LS-SVM结构设计,并在XILINX SPANT3E系列FPGA中完成了LS-SVM的分类与回归实验.结果表明,该硬件实现方法很好地完成了SVM的分类与回归功能,与现有的软件仿真和模拟器件实现相比,该方法具有更快的收敛速度和更高的灵活性. A new FPGA hardware implementation approach of dynamic neural network for support vector machines was provided and researched.The structure of dynamic neural network for least square support vector machines(LS-SVM) was proposed.The architecture design of dynamic neural network for LS-SVM based on VHDL language was also performed.The experiments of classification and regression for LS-SVM were achieved on XILINX SPANT3E series FPGA.The experimental results show that it is effective to complete the LS-SVM classification and regression based on presented method.Compared with the(existing) methods based on software implementation or analog device implementation,this approach has(better) convergence rate and better flexibility.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期962-967,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(60675048) 陕西省自然科学基金(2007F30)资助项目
关键词 支持向量机 最小二乘支持向量机 动态神经网络 稳定性 support vector machines(SVM) least square support vector machines(LS-SVM) dynamic neural network stability
  • 相关文献

参考文献12

  • 1Vapnik V N. The nature of statistical learning theory [M].Berlin: Springer-Verlag, 1982.
  • 2郭磊,陈进,朱义,肖文斌.小波支持向量机在滚动轴承故障诊断中的应用[J].上海交通大学学报,2009,43(4):678-682. 被引量:15
  • 3Perfetti R, Ricci E. Analog neural network for support vector machine learning [J]. IEEE Trans on Neural Network, 2006, 17(4) : 1085-1091.
  • 4Anguita D, Boni A. Improved neural network for SVM learning [J]. IEEE Trails on Neural Networks, 2002,13(5) : 1243-1244.
  • 5Tan Y, Xia Y S, Wang J. Neural network realization of support vector machines classification [C] //Proc IEEE Int Joint Conf Neural Networks. Como, Italy: IEEE Press,2000:411-416.
  • 6Xia Y S, Wang J. A one-layer recurrent neural network for support vector machines learning [J]. IEEE Trans on Syst Man Cybern B, 2004, 34 (2): 1261- 1269.
  • 7Alzate C, Suykens J A K. Kernel component analysis using an epsilon-insensitive robust loss function [J]. IEEE Trans on Neural Network, 2008, 19(9): 1583- 1598.
  • 8Zhao Y P, Sun J G. Recursive reduced least squares support vector regression [J]. Pattern Recognition, 2009, 42(5): 837-842.
  • 9Chang J H, Jo Q H, Kim D K, etal. Global soft decision employing support vector machine for speech enhancement[J].IEEE Signal Processing Letters, 2009, 16(1): 57-60.
  • 10刘涵,叶平.基于递归神经网络的LS-SVM硬件实现与实验研究[J].仪器仪表学报,2009,30(8):1745-1751. 被引量:7

二级参考文献21

  • 1林继鹏,刘君华.基于小波的支持向量机算法研究[J].西安交通大学学报,2005,39(8):816-819. 被引量:25
  • 2于振华,蔡远利.基于在线小波支持向量回归的混沌时间序列预测[J].物理学报,2006,55(4):1659-1665. 被引量:15
  • 3吴峰崎,孟光.基于支持向量机的转子振动信号故障分类研究[J].振动工程学报,2006,19(2):238-241. 被引量:19
  • 4Zhang L, Zhou W, Jiao L. Wavelet support vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2004, 34(1): 34-39.
  • 5VAPNIK V N. The nature of statistical learning theory[M]. Berlin: Springer-Verlag, 1982.
  • 6XIA Y S, WANG J. A one-layer recurrent neural network for support vector machine learning[J]. IEEE Trans. Syst. Man Cybem. B, Cybern, 2004,34(2): 1261-1269.
  • 7XIA Y S, WANG J. A recurrent neural network for solving nonlinear convex programs subject to linear con- straints[J]. 1EEE Trans. Neural Networks, 2005,16(2):379-386.
  • 8SUYKENS J A K. Least squares support vector machines classifiers[J]. Neural Processing Letters, 1999, 9(3): 293- 300.
  • 9ANGUITA D, RIDELLA S, ROVETrA S. Circuital implementation of support vector machines[J]. Electronics Letters, 1998,34(16):1596-1597.
  • 10ANGUITA D, BONI A. Neural network learning for analog VLSI implementations of support vector machines: a survey[J]. Neurocomputing, 2003,55:265-283.

共引文献20

同被引文献30

  • 1周琰,靳世久,张昀超,孙立瑛.管道泄漏检测分布式光纤传感技术研究[J].光电子.激光,2005,16(8):935-938. 被引量:52
  • 2张志涌.精通MATLAB(6.5版)[M].北京:北京航空航天大学出版社,2003.
  • 3Suykens J A K, Vandewalle J. Least square support vector machines classifiers[J]. Neural Processing Let- ters,1999,9(3) :293-300.
  • 4刘波,杨亦飞,张键,罗建花,刘艳格,开桂云.基于M-Z干涉的光纤围栏系统实验研究[J].光子学报,2007,36(6):1013-1017. 被引量:27
  • 5Hirakuchi H,Kajima R,Kawaguchi T. Application of a piston-type absorbing wave-maker to irregular wave experiments[J].{H}Coastal Engineering in Japan,1990,(1):11-24.
  • 6Frigaard P,Christensen M. An absorbing wave-maker based on digital filters[A].Kobe,Japan:ASCE,1994.168-180.
  • 7Sch(a)ffe H A,Jakobsen K P. Non-linear wave generation and active absorption in wave flumes[A].Thessaloniki,Greec:ASCE,2003.68-78.
  • 8Abdeldjebar B,Khier B. Generalized predictive control:Application of the induction motor[A].Korea:IEEE,2008.526-529.
  • 9Jadlovská A,Kabakov N,Sarnovsky J. Predictive control design based on neural odel of a non-linear system[J].Journal of Applied Sciences at Budapest Teeh Hungary,2008,(4):93-108.
  • 10Hague C H,Swan C. A multiple flux boundary element method applied to the description of surface water waves[J].{H}Journal of Computational Physics,2009.5111-5128.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部