期刊文献+

CCCC矩形薄板面内半余弦分布压力下的屈曲 被引量:1

BUCKLING ANALYSIS OF CCCC THIN RECTANGULAR PLATES WITH COSINE-DISTRIBUTED COMPRESSIVE LOADS
在线阅读 下载PDF
导出
摘要 针对四边固支(all edges clamped,CCCC)的弹性矩形薄板在两对边半余弦分布压力下的面内应力分布以及屈曲问题,基于辛弹性力学的平面矩形域Hamilton体系下的实数型面内应力分布通解,依据必须满足的应力边界条件,借助符号运算软件Maple,得到不同长宽比矩形薄板在半余弦分布压力下合理的面内应力分布。考虑到应力分布表达式的复杂性,运用Galerkin法,根据CCCC矩形薄板弯曲的位移边界条件,给出不同长宽比弹性矩形薄板在半余弦分布压力下的屈曲载荷系数。通过与已有文献结果的比较表明,文中求解方法更为有效和正确。基于所给出的结果,可望为解决矩形薄板在非线性分布载荷下的面内应力分布以及屈曲问题提供一种新的研究方法。 The distribution of in-plane stresses and buckling of thin rectangular plates having all edges clamped (CCCC), with co- sine-distributed in-plane loadings along two opposite plate edges are studied. Based the general solutions of the in-plane stress distribution under the Hamilton system of sympleetie elasticity in plane rectangular domain, cousidered all in-plane stress boundary conditions, with the help of the symbolic computational software Maple, the formulae determining the stress distribution for various aspect ratios thin rectangular elastic plates subjected to in-plane compressive loads varyi'ng cosine along two opposite edges are gained. Taking into account the complexity of the expressious of stress distribution, a set of buckling loads for the CCCC thin rectangular plates are obtained by using the Galerkin method. The efficiency and validity of the proposed method is confirmed by the comparisons made with the results existed in literatures. Based on the results reported herein, one may conclude that the proposed method could provide a new way for obtaining the inplane stresses and buckling analysis of thin rectangular plates subjected noulinearly distributed in-plane loadings.
机构地区 江苏大学理学院
出处 《机械强度》 CAS CSCD 北大核心 2010年第4期627-631,共5页 Journal of Mechanical Strength
基金 江苏大学高级专业人才科研启动基金(06JDG079)
关键词 屈曲 HAMILTON体系 辛弹性力学 余弦分布载荷 矩形板 Budding Hamilton system Symplectic elasticity Cosine-distributed load Rectangular plates
  • 相关文献

参考文献8

  • 1王知人,王平,白象忠.四边简支载流矩形薄板的磁弹性动力屈曲分析[J].机械强度,2008,30(3):422-427. 被引量:1
  • 2Young W C, Budynas R G. Roark's formulas for stress and strain[ M]. 7th ed. New York: McGRAW-HILL, 2002: 502-520.
  • 3Benoy M B. An energy solution for the buckling of rectangular plates under non-linear in-plane loading [ J ]. Aeronautical Journal, 1969, 73 : 974-977.
  • 4何录武,程昌钧.矩形薄板的屈曲状态[J].应用数学和力学,1992,13(5):401-406. 被引量:2
  • 5Devarakonda K K V, Bert C W. Buckling of rectangular plate with nonlinearly distributed compressive loading on two opposite sides: comparative analysis and results[J]. Mechanics of Advanced Materials and Structures, 2004, 11(4-5): 433-444.
  • 6Xinwei Wang, Xinfeng Wang, Xudong Shi. Differential quadrature buckling analyses of rectangular plates subjected to non-uniform distributed inplane loadings[J]. Thin-Walled Structures, 2006, 44(8) : 837-843.
  • 7Xinwei Wang, Lifei Gan, Yihui Zhang. Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides [ J]. Advances in Engineering Software, 2008, 39(6): 497-504.
  • 8Timoshenko S. Theory of plates and shells[ M ]. New York: McGraw- Hill, 1940: 299-301.

二级参考文献18

  • 1Yang Xiao,Acta Math Appl Sin,1991年,7卷,2期,1页
  • 2何录武,1990年
  • 3吕小安,1990年
  • 4朱正佑,分支问题的数值计算方法,1989年
  • 5朱正佑,力学学报,1986年,18卷,2期,123页
  • 6张建武,上海交通大学学报,1984年,18卷,5期,101页
  • 7Moon F C, Pao Y H. Magnetoelastic buckling of a thin plate[J]. ASME J Appl Mech, 1968, 35(1) : 53-58.
  • 8Popelar C H. Posthuckling analysis of a magnetoelastic beam[J]. J Appl Mech, 1972, 39: 207-211.
  • 9Maugin G A, Goudjo C. The equations of soft ferromagnetic elastic plates [J]. Int J Solids Struct, 1982, 18(10): 889-912.
  • 10Erigin A C. Theory of electromagnetic elastic plates[ J]. Int J Engng Sci, 1989, 27(4): 363-375.

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部