期刊文献+

基于EEG的脑-机接口实用化研究进展 被引量:6

Development of Practicality of EEG-based Brain-Computer Interface
原文传递
导出
摘要 脑-机接口(BCI)是大脑与外部设备之间建立直接联系的系统。在过去的二十年内,脑-机接口研究取得了重要进展,出现了许多基于不同脑电信号的研究方法,并尝试朝着实时、更自然的实用化方向发展。本文对基于EEG的BCI研究中的实时化和刺激方式问题进行综述:通过对DSP在BCI系统中的应用、信号预处理、算法优化等内容的讨论,指出了实时化研究的重点关注内容;通过对目前BCI研究中涉及到的脑电产生方式的讨论,提出基于想象运动的脑电产生方式是最理想的方法,而将虚拟现实反馈技术引入BCI系统中,有助于减低刺激引起的不适,提高BCI系统的性能。 Brain-computer interface (BCI) is a system that can create direct connection between brain activity and external devices. In the past 20 years,important achievements of research on BCI have been made. Now there are lots of research methods based on electroencephalic signals,and researchers are trying to make the BCI system possess the characteristics of real-time and become more natural and practical. This paper presents an overview of real-time and stimulating way to EEG-based BCI research. Through the discussions on the applications of DSP in BCI system,in signal preprocessing and in algorithm optimization,the high lights in real-time research are pointed out. In the discussions about the way to produce EEG signals in BCI,the researchers suggested that the imaging movement be the most ideal way in that it will reduce the discomfort in stimulation by application of the virtual reality technology in BCI system,thus it will be conducive to improvement in the performance of BCI system.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第3期702-706,共5页 Journal of Biomedical Engineering
基金 重庆市发改委重大产业化前期关键技术研究项目资助(2008-316)
关键词 脑-机接口 脑电图 虚拟现实 弱刺激 BCI EEG Virtual reality Weak stimulation
  • 相关文献

参考文献24

  • 1MASON S G, BASHASHATI A, FATOURECHI M,et al. A comprehensive survey of brain interface technology designs [J]. Ann Biomed Eng,2007,35(2):137-169.
  • 2WANG Y J, GAO X R, HONG B,et al. Brain-computer interfaces based on visual evoked potentials[J]. IEEE Engineering In Medicine and Biology,2008,27(5) :64-71.
  • 3徐丁峰,程明,高小榕,高上凯.数字信号处理器在脑-机接口系统中的应用[J].北京生物医学工程,2002,21(4):256-259. 被引量:15
  • 4FATOURECHI M, BASHASHATI A, WARD R K, et al. EMG and EOG artifacts in brain computer interface systems: A survey [J]. Clinical neurophysiology, 2007,118 : 480-494.
  • 5LEMM S, CUR IO G, HLUSHCHUK Y. Enhancing the signal-to-noise ratio of ICA-based extracted ERPs [J]. IEEE Transactions on Biomedical engineering, 2006,53 (4) : 601- 607.
  • 6NAVARRO I, SEPULVEDA F, HUBA IS B. A comparison of time-frequency and ICA based features and five classifiers for wrist movement classification in EEG signals[C]. Shanghai, China: Proeeedings of the 2005 IEEE Engineering in Medicine and Biology 27 th Annual Conference, 2005:2118- 2121.
  • 7HSU W Y, LIN C C, JU M S, et al: Wavelet-based fractal features with active segment selection: Application to singletrial EEG data[J]. Neuroscience Methods,2007,163(1):145- 160.
  • 8SHOKER L, SANEI S, SUM ICH A. Distinguishing between left and right finger movement from EEG using SVM [C]. Shanghai, China: Engineering in Medicine and Biology 27 th Annual Conference, 2005 : 5420-5423.
  • 9MEHRNAZ K, HAZRATI, ERFANIAN A. An on-line BCI for control of hand grasp sequence and holding using adaptive probabilistic neural network[C]. 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, 2008:1009-1012.
  • 10SCHALK G, BRUNNER P, GERHARDT L A, et al. Braincomputer interfaces (BCIs):Detection instead of classification [J]. Neuroscience Methods,2008,167(1) :51-62.

二级参考文献2

共引文献14

同被引文献87

  • 1魏琳,沈模卫,张光强,施壮华.EEG波形伪迹去除方法[J].应用心理学,2004,10(3):47-52. 被引量:9
  • 2马颖颖,张泾周,吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102. 被引量:12
  • 3Wolpaw JR,Birbaumer N,McFarland WJ.Brain-computer interface technology:A review of the first international meeting.IEEE Trans Rehabil Eng.2000;8(2):164-173.
  • 4Wang Y,Wang R,Gao X,et al.A practical VEP-based brain-computer interface.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):234-239.
  • 5Hinterberger T,Schmidt S,Neumann N,et al.Brain-computer communication and slow cortical potentials.IEEE Trans Biomed Eng.2004;51(6):1011-1018.
  • 6Blankertz B,Dornhege G,Krauledat M.The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell.Proc.of the 3rd International Brain-Computer Interface Workshop and Training Course.2006:108-109.
  • 7Hochberg LR,Serruya MD,Friehs GM,et al.Neuronal ensemble,control of prosthetic devices by a human with tetraplegia.Nature.2006;442(13):164-171.
  • 8Hazrati MKh,Erfanian A.An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.Med Eng Phys.2010;32(7):730-739.
  • 9Hammon PS,de Sa VR.Preprocessing and meta-classification for brain-computer interfaces.IEEE Trans Biomed Eng.2007; 54(3):518-525.
  • 10Ince NF,Goksu F,Tewfik AH,et al.Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface.Biomed Signal Proc Contr.2009;4:236-246.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部