期刊文献+

基于神经网络集成的P2P流量识别研究 被引量:3

Research of P2P Traffic Identification Based on Neural Network Ensemble
在线阅读 下载PDF
导出
摘要 提出一种新的基于神经网络集成的P2P流量识别方法,利用CFS特征选择算法提取P2P流量特征,使用动态加权集成方法将6个神经网络集成应用于P2P流量识别。通过在实际网络流数据集上与单一BP神经网络、决策树、朴素贝叶斯和支持向量机算法的对比实验,结果表明该方法具有较高的P2P流量识别准确率和稳定性。 A novel P2P traffic identification method based on neural network ensemble is proposed. A P2P flow detection model is developed by using correlation-based feature selection (CFS) algorithm to extract P2P flow characteristics, and utilizing six ensemble neural networks by dynamic weighted integration method. Through experimental comparison between this proposed model and traditional methods, such as single BP neural network, decision tree, bayesian, and support vector machine, it is shown that the proposed method has a better P2P traffic identification accuracy and stability.
出处 《南京邮电大学学报(自然科学版)》 2010年第3期79-83,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60973139 60773041) 国家高技术研究发展计划(863计划)(2007AA01Z404) 江苏省自然科学基金(BK2008451) 2006江苏省软件专项 省级现代服务业发展专项资金 中国博士后科学基金(0801019C) 江苏省博士后科研资助计划(20090451240 20090451241) 江苏高校科技创新计划(CX09B-153Z CX08B-086Z) 江苏省"六大人才高峰"计划(2008118) 江苏省计算机信息处理技术重点实验室基金(2010)资助项目
关键词 神经网络 集成学习 流量识别 P2P neural network ensemble learning traffic identification P2P
  • 相关文献

参考文献23

二级参考文献64

  • 1李江涛,姜永玲.P2P流量识别与管理技术[J].电信科学,2005,21(3):57-61. 被引量:43
  • 2陈海军,李仁发,杨磊.基于Linux内核扩展模块的P2P流量控制[J].计算机工程,2007,33(1):176-177. 被引量:9
  • 3袁震东 淇渊 林武忠.数学建模[M].上海:华东师范大学出版社,1999..
  • 4Kim M S, Won Y J, Hong J W K. Application level traffic monitoring and analysis on IP networks[J]. ETRI Journal, 2005, 27(1): 22-41.
  • 5Moore A W, Papagiannaki K. Toward the accurate identification of network applications[C]//6th International Workshop on Passive and Active Network Measurement. Heidelberg: Springer Verlag, 2005:41-54.
  • 6Matthew R, Subhabrata S, Oliver S, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[ C]//Proceedings of the 2004 ACM SIGCOMM Internet Measurement Conference. New York: Association for Computing Machinery, 2004 : 135-148.
  • 7McGregor A, Hall M, Lorier P, et al. Flowclustering using machine learning techniques[ C]//5th International Workshop on Passive and Active Network Measurement . Heidelberg.. Springer Verlag, 2004. 22-41.
  • 8Augustin S, Salamatian K, Nina T, et al. Flow classification by histograms or how to go on safari in the Internet [C]//SIGMETRICS 2004/Performance 2004: Joint International Conference on Measurement and Modeling of Computer Systems. New York: Association for Computing Machinery, 2004: 49-60.
  • 9Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: multilevel traffic classification in the dark[J]. Computer Communication Review, 2005, 35(4):229-240.
  • 10Zander S, Nguyen T, Armitage G. Automated traffic classification and application identification using machine learning[C]///Proceedings of The IEEE Conference on Local Computer Networks - 30th Anniversary. Sydney: IEEE Computer Society, 2005: 250-257.

共引文献341

同被引文献40

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 2李江涛,姜永玲.P2P流量识别与管理技术[J].电信科学,2005,21(3):57-61. 被引量:43
  • 3陈可可,姚建,徐磊.BP人工神经网络模型在拉萨道路交通噪声预测中的应用[J].环境科学与管理,2006,31(4):78-81. 被引量:6
  • 4王国平.灰色系统理论在城市交通噪声预测和绝对关联度分析中的应用[J].中国环境科学,1996,16(1):56-59. 被引量:26
  • 5Dang T D, Perenyi M. On the Identification and analuysis of P2P traffic Aggregation [ M ]. Networ2 king, 2006.
  • 6孙海波.基于流量特征的P2P识别及管理[C]//第二届中国科学院博士后学术年会暨高新技术前沿与发展学术会议程序册,2010.
  • 7Moore, A. W. Zuev, D. Crogan. M Discriminators for use in flow-based classication[ R]. Technical Report RR - 05 - 13, Department of Computer Science, Queen Mary, University of London ,2005.
  • 8Wang Yu,Xiang Yang,Yu Shunzheng.Internet traffic classification using machine learning:a token-based approach[C]//Proc of the 16th IEEE International Conference on Computational Science and Engineering.[S.l.]:IEEE Press,2013:285-289.
  • 9Wolpert D H.Stacked generalization[J].Neural Networks,1992,5(2):241-259.
  • 10Quinlan J R.Bagging,boosting,and C4.5[C]//Proc of the 13th National Conference on Artificial Intelligence.[S.l.]:AAAI,1996:725-730.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部