期刊文献+

飞行模拟机电动操纵负荷系统控制与仿真 被引量:8

Control and simulation of electric control loading system of flight simulator
在线阅读 下载PDF
导出
摘要 针对单一PID方法控制飞行模拟机电动操纵负荷系统时存在非线性、外力干扰、多余力及外环震荡等问题,根据FCMAC可学习任意多维非线性映射,FCMAC与PID并行控制器鲁棒性强和BP神经网络前馈补偿器具有自适应性、可有效降低多余力影响的特点,采用了由FCMAC与PID并行控制器和BP神经网络前馈补偿器组成的复合神经网络控制方法,解决了单一PID控制方法中存在的问题。对基于复合神经网络控制方法的系统进行了建模与仿真,仿真结果表明该方法使模型力与输出力偏差由1.1N降低到0.1N,干扰信号作用下力偏差保持在1.5%以内,将超调量由35%降低到2%,稳定时间由0.7s缩短到0.05s。 There are problems such as nonlinearity,disturbance,extraneous force and oscillation of exter-nal ring in a flight simulator electric control loading system controlled by single PID. The parallel control-ler neural networks has the feature of robust,fuzzy cerebellar model articulation controller (FCMAC) can study any nonlinear map. Also BP neural networks compensator has the character of being adaptive and the ability to reduce the influence of extraneous force. Therefore a composite neural network control algo-rithm was proposed,which consists of FCMAC neural networks and PID parallel controller,and back propagation (BP) neural networks. The control system was modeled and simulated based on the compos-ite neural network. The results show that the deviation between model torque and output torque is induced from 1. 1 N to 0. 1 N,and the deviation in disturbing signal stays the range of 1. 5% . Also the overshoot is induced from 35% to 2% ,and stabilization time is shortened from 0. 7 s to 0. 05 s.
出处 《电机与控制学报》 EI CSCD 北大核心 2010年第5期73-78,共6页 Electric Machines and Control
基金 中国民用航空总局科技项目(MHR0703)
关键词 飞行模拟机 电动操纵负荷系统 复合神经网络 FCMAC与PID并行控制器 BP自适应补偿器 flight simulator electric control loading system composite neural network FCMAC and PID parallel controller BP neural networks adaptive compensator
  • 相关文献

参考文献8

二级参考文献37

共引文献62

同被引文献79

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部