期刊文献+

立方格子导电球的有效介电常数的频率依赖性

Frequency Dependencies of Effective Dielectric Constants of Cubic Lattices of Conducting Spheres
在线阅读 下载PDF
导出
摘要 利用Maxwell-Wagner模型,同时采用John Lam在磁流变体中研究磁导率的迭代方法,研究了电流变体中3种结构的立方格子导电球的有效介电常数与频率的依赖关系.结果发现,有效介电常数依赖于外加电场的频率,在高频条件下ω≥0.1-1 kHz,有效介电常数依赖于导电球与流体的介电常数比,而在低频或直流条件下,是电导率起主要作用.所得结果与相关实验结果基本吻合. The frequency dependency of effective dielectric constant of three structures of cubic lattices of conducting spheres is studied by using Maxwell-Wagner model and quoting the iteration method of John Lam.The result shows that effective dielectric constants depend on the frequency of applied electric field.The effective dielectric constants for high-frequency ω≥0.1-1kHz applied electric fields,the effective dielectric constants of three cubic lattices dependupon the dielectric constants of conducting spheres and suspending fluid.For lowfrequency or dc electric fields,the conductivitiesof the components are dominant.At the same time,we find that the effective dielectric constant of Face-centred cubic lattices is the largest among three cubic lattices.Therefore,Face-centred cubic lattices is the most stably structure among three cubic lattices under the same condition.The conclusions of our numerical calculation are in good agreement with the corresponding experimental results.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2010年第2期120-124,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 湖南省教育厅自然科学基金资助项目(07C528)
关键词 有效介电常数 立方格子 电导率 体积比 effective dielectricconstant cubic lattices electric conductivity volume fraction
  • 相关文献

参考文献2

二级参考文献23

  • 1Shen R, Wang X Z, Wen W J and Lu K Q 2005 Int. J.Mod. Phys. B 19 1104
  • 2Wang X Z, Shen R, Wen W J and Lu K Q 2005 Int. J.Mod. Phys. B 19 1110
  • 3Davis L C 1997 J. Appl. Phys. 81 1985
  • 4Tao R, Jiang Q and Sim H K 1995 Phys. Rev. E 52 2727
  • 5Gonon P, Foulc J N, Atten P and Boissy C 1999 J. Appl.Phys. 86 7160
  • 6Chen Y, Sprecher A F and Conrad H 1991 J. Appl. Phys.70 6796
  • 7Wang Z Y, Peng Z, Lu K Q and Wen W J 2003 Appl.Phys. Lett. 82 1796
  • 8Wang Z Y, Shen R, Niu X J, Lu K Q and Wen W J 2003J. Appl. Phys. 94 7832
  • 9Zhang L D, Zhang H F, Wang G Z, Mo C M and Zhang Y 1996 Phys. Stat. Solidi A- Appl. Res. 157 483
  • 10Dey A, De S, De A and De S K 2004 Nanotechnology 151277

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部