期刊文献+

基于水平集改进的水下目标轮廓提取方法 被引量:5

An improved method of underwater objects contours extraction based on level set
在线阅读 下载PDF
导出
摘要 为以更快的计算速度提取到更加精确的轮廓,提出一种基于水平集改进的水下目标轮廓提取方法.即利用水下目标检测结果确定目标演化子区域,缩小目标区域范围,同时在目标检测结果中,根据目标高亮区和阴影区的位置,确定各个目标演化子区域初始闭合曲线的中心坐标,通过Vese-Chan分段常量四相水平集方法的演化函数进行目标高亮区和阴影区的轮廓提取.对不同原始声纳图像的实验比较分析表明,提出的水下目标轮廓提取方法具有较高的适应性和较快的计算速度,能精确地提取到目标高亮区和阴影区的轮廓. In order to improve the accuracy of extracted contours and raise calculation speed,this paper presents an improved method based on level set for underwater objects contours extraction.Object evolution subregion,which is determined by the underwater objects detection results,is proposed to dwindle the search region.At the same time,the centers coordinates of initial closed curves of each object evolution sub-region are determined by the location of object-highlight and shadow regions.The contours of object-highlight and shadow regions are extracted by the four-phase piecewise constant Vese-Chan level set evolution functions.Experimental results and analysis of different kinds of real sonar images demonstrate that the method proposed here is highly adaptable and the calculation speed is faster,moreover,it can more accurately extract object-highlight and shadow contours.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第4期660-664,共5页 Journal of Harbin Institute of Technology
基金 中央高校基本科研业务费专项资金资助项目(HEUCF061005) 哈尔滨市基金资助项目(2009RFQXG026)
关键词 水下目标 水平集 轮廓提取 子区域 underwater objects level set contour extraction sub-region
  • 相关文献

参考文献3

二级参考文献30

共引文献11

同被引文献33

  • 1郭海涛,田坦,张春田.基于模糊聚类的声呐图像多区域分割[J].海洋技术,2004,23(3):39-40. 被引量:6
  • 2阳凡林,独知行,李家彪,吴自银,初凤友.基于MRF场的侧扫声呐图像分割方法[J].海洋学报,2006,28(4):43-48. 被引量:12
  • 3Mignotte M, Collet C, Perez P, et al. Hybrid genetic optimization and statistical model based approach for the classification of shadow shapes in sonar imagery [J]. IEEE Trans Pattern Anal Machine Intell, 2000, 22(2) : 129-141.
  • 4Zhang Jianshu. Unsupervised image segmentation and pattern recognition for sonar images[D]. Bremen.. Applied Sciences, Hochschule Bremen University, 2004.
  • 5Mignotye M, Collet C, Perez P, et al. Three-class Markovian segmentation of high-resolution sonar im- age[J]. Computer Vision and Image Understanding, 1999, 76(3).. 191-204:.
  • 6Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sides- can sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-105.
  • 7Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field esti- mation and segmentation of MRI data [J]. IgEE Transactions on Medical Imaging, 2002, 21 (3) : 193-199.
  • 8Elston G R, Bell J M. Pseudospeetral time-domain modeling of non-Rayleigh reverberation., synthesis and statistical analysis of a sidescan sonar image of sand ripples[J]. IEEE Journal of Oceanic Engineer- ing, 2004, 29(2): 317-329.
  • 9Liu Zhongxuan, Peng Silong. Boundary processing of bidimensional EMD using texture synthesis[J]. IEEE Signal Processing Letters, 2005, 12(1): 33- 36.
  • 10Ye Xiufen, Zhang Zhehui, Liu P X, et al. Sonar im- age segmentation based on GMRF and level-set mod- els[J]. Ocean Engineering, 2010, 37: 891-901.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部