期刊文献+

a尺度r重区间正交多小波的构造 被引量:1

Construction of orthogonal interval multiwavelets with multiplicity r and dilation factor a
原文传递
导出
摘要 基于L2(R)上的紧支撑正交多尺度函数和多小波的构造思想与方法,探讨了任意支撑长度γ的a尺度r重区间多小波系统的构造理论与性质.给出了区间[0,1]上a尺度r重正交多小波的构造方法,得到了区间多小波的参数化表示;并且给出区间多小波的构造算例. Based on the method and constructional idea of tight supported orthogonal multiscaling function and multiwavelets on L2(R),we study the properties and constructional theories with any tight supported γ,multiplicity r and dilation a on the interval.We introduce the constructional thought of orthogonal multiwavelets with multiplicity r and dilation a on the interval [0,1]and obtain the parametric expressions of interval multiwavelets.Inaddition,we propose the construction examples of interval multiwavelets.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期258-266,共9页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10961001) 教育部科学技术研究重点资助项目(209152) 宁夏自然科学基金资助项目(NZ0846)
关键词 正交性 正交多尺度函数 多小波 区间多小波 orthogonality orthogonal multiscaling function multiwavelets interval multiwavelets.
  • 相关文献

参考文献12

  • 1ANDERSSON L, HALL N, JAWERTH B, et al. Wavelets on closed subsets of the real line [ C ]//SCHUMAKER L L, WEBD G, Recent Advances in Wavelet Analysis. Boston : Academic, 1994 : 1-60.
  • 2GUAN Lu-tai. Uncontrolled node's B - spline wavelet on the interval [ 0, 1 ] [ J ]. Journal of Engineering Mathematics, 1998,15(3) :1-6.
  • 3COHEN A, DAUBECHIES I, VIAL P. Wavelets on the interval and fast wavelet transfoems [ J ]. Appl Comput Harmon Anal, 1993,1 ( 1 ) :54-81.
  • 4CHUI C ,QUAK E. Wavelets on a bounded interval [ J ]. Numerical Methods of Approximation Theory, 1992,9 (1) :53- 75.
  • 5HARDIN D P, MARASOVICH J A. Biorthogonal multiwavelets on [ - 1,1 ] [ J ]. Appl Comput Harmon Anal, 1999, 7 ( 1 ) :34-53.
  • 6DAHMEN W, HAN Bin, JIA Rong-qing, et al. Biorthogonal muitiwavelets on the interval:Cubic Hermite splines [ J]. Constr Approx,2000,16 (2) :221-259.
  • 7HAN Bin, JIANG Qing-tang. Multiwavelets on the interval [ J ]. Applied and Computational Harmonic Analysis, 2002, 12( 1 ) : 100-127.
  • 8高协平,周四望.正交平衡对称的区间多小波研究[J].中国科学(E辑),2005,35(4):385-404. 被引量:6
  • 9杨守志,程正兴.[0,1]区间上的r重正交多小波基[J].数学学报(中文版),2002,45(4):789-796. 被引量:10
  • 10STRELA V. Multiwavelets : theory and applictions [ D ]. Ph D Thesis, USA : MIT, 1996.

二级参考文献46

  • 1陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 2陈清江,张同琦,程正兴,李学志.一类多重向量值双正交小波包的刻划[J].云南大学学报(自然科学版),2006,28(6):472-477. 被引量:7
  • 3黄永东,程正兴.α带小波紧框架的显式构造方法[J].数学物理学报(A辑),2007,27(1):7-18. 被引量:15
  • 4Chui C. K., An Introduction to Wavelets, Bostan: Academic Press, 1992.
  • 5Daubechies I., Orthonornal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909--996.
  • 6Franklin P., A set of continuous orthogonal functions, Math. Ann., 1928, 100: 522-529.
  • 7Meyer Y., Ondelettes sur l'intervalle, Rev. Mat. Iberoamericana, 1991, 7: 115-143.
  • 8Chui C. K., Quak E., Wavelets on a Bounded Interval, In "Numerical Methods of Approximation Theory"(Braess D. and Schumaker L. L. eds.), Basel: Birkhauser-Verlag, 1992, 53-75.
  • 9Micchelli C. A., Xu Y., Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comp. Harmonic Anal., 1994, 1: 391-401.
  • 10Micchelli C. A., Xu Y., Reconstruction and decomposition algorithms for biorthogonal multiwavelets, Multidimensional Systems and Signal Processing, 1997, 8: 31-67.

共引文献24

同被引文献12

  • 1杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 2Shannon CE.Communication in the prensence of noise[J].Proc IRE,1949,37(1):10-21.
  • 3Walter GG.A sampling theorem for wavelet subspaces[J].IEEE Trans Inform Theory,1992,38(4):881-884.
  • 4Janssen AJEM.The Zak transform and sampling theorems for wavelet subspaces[J].IEEE Trans Signal Processing,1993,41(12):3360-3365.
  • 5Aldroubi A,Grochenig K.Nonuniform sampling and reconstruction in shift-invariant spaces[J].SIAM Rev,2001,43(4):585-620.
  • 6Zhou X,Sun W.On the sampling theorem for wavelet subspaces[J].J Fourier Anal Appl,1999,5(4):347-354.
  • 7Chen W,Itoh S,Shiki J.On sampling in shift invariant spaces[J].IEEE Trans Inform Theory,2002,10(48):2802-2810.
  • 8Chen W,Itoh S.A sampling theorem for shift invariant subspaces[J].IEEE Trans Signal Process,1998,10(46):2822-2824.
  • 9Sun W,Zhou X.An aspect of the sampling theorem[J].International Journal of Wavelets,Multiresolution and Information Processing,2005,3(2):275-265.
  • 10Sun W.Sampling theorems for multivariate shift invariant subspaces[J].Sampl Theory Signal Image Process,2005,4(1):73-98.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部