期刊文献+

非自治二阶哈密顿系统周期解的存在性(英文) 被引量:2

The Existence of Periodic Solutions for Some Nonautonomous Second-Order Hamiltonian Systems
在线阅读 下载PDF
导出
摘要 利用临界点理论中的极大极小作用原理获得了非自治二阶哈密顿系统ü=F(t,u(t)),a.e.t∈[0,T]u(0)-u(T)=.u(0)-.u(T)=0周期解的存在性结果.其中T>0,F:[0,T]×RNR满足:对每个x∈RN,F(t,x)关于t是可测的;对几乎处处的t∈[0,T],F(t,x)关于x是连续可微的;存在a∈C(R+,R+)和b∈L1(0,T;R+)使得|F(t,x)|≤a(|x|)b(t)|F(t,x)|≤a(|x|)b(t)对所有的x∈RN和几乎处处的t∈[0,T]都成立. The existence of periodic solutions is obtained for nonautonomous second order Hamiltonian systems=▽F(t,u(t)),a.e.t∈[0,T]u(0)-u(T)=(0)-(T)=0where T0,and F:[0,T]×R^N→R satisfies assumption:which says that F(t,x)is measurable in t for every x∈RN and continuously differentiable in x for a.e.t∈[0,T],and there exist a∈C(R^+,R^+),b∈L1(0,T;R^+)such that|F(t,x)|≤a(|x|)b(t)|▽F(t,x)|≤a(|x|)b(t)for all x∈R^N and a.e.t∈[0,T].The existence of solutions is proved by the minimax method in critical point theory.
作者 廖坤 唐春雷
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期110-114,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771173)
关键词 周期解 二阶哈密顿系统 鞍点定理 (PS)条件 Sobolevs不等式 Writingers不等式 periodic solution second order Hamiltonian system saddle point theorem (PS)condition Sobolev's inequality Wirtinger's inequality
  • 相关文献

参考文献9

  • 1MA Jian, TANG Chun-Lei. Periodic Solutions for Some Nonautonomous Second-Order Systems [J].J Math Anal Appl, 2002, 275(2): 482-494.
  • 2MAWHIN Jean, WILLEM M, Critical Point Theory and Hamiltonian Systems [M] //Applied Mathematical Sciences. New York: Springer-Verlag, 1989.
  • 3TANG Chunlei. Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity [J].Proc Amer Math Soc, 1998, 126(11) : 3263 - 3270.
  • 4YANG Rigao. Periodic Solutions of Some Non-Autonomous Second Order Hamiltonian Systems [J]. Nonlinear Anal, 2008, 69(8) : 2333 - 2338.
  • 5YE Yi-Wei, TANG Chun-Lei. Periodic Solutions for Some Nonautonomous Second Order Hamiltonian Systems [J]. J Math Anal Appl, 2008, 344(1): 462-471.
  • 6ZHANG Xingyong, ZHOU Yinggao. Periodic Solutions of Non-Autonomous Second Order Hamiltonian Systems [J]. J Math Anal Appl, 2008, 345(2): 929-033.
  • 7欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
  • 8江芹,马晟.一类次二次Hamilton系统的周期解(英文)[J].西南师范大学学报(自然科学版),2007,32(1):6-10. 被引量:2
  • 9赵永正,吴行平,唐春雷.一类p-Laplacian方程非零解的存在性(英文)[J].西南大学学报(自然科学版),2010,32(2):118-122. 被引量:4

二级参考文献20

  • 1欧增奇,唐春雷.一类非自治超二次二阶Hamilton系统的周期解[J].西南师范大学学报(自然科学版),2005,30(2):226-229. 被引量:5
  • 2吕颖,唐春雷.一类对称二阶Hamiltonian系统的偶同宿轨(英文)[J].西南师范大学学报(自然科学版),2005,30(5):824-830. 被引量:2
  • 3欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
  • 4Li Shujie,Willem M.Applications of Local Linking to Critical Point theory[J].J Math Anal Appl,1995,189:6-32.
  • 5Fei Guohua.On Periodic Solutions of Superquadratic Hamiltonian Systems[J].Elec J Diff Eq,2002,08:1-12.
  • 6Brezis H,Nirenberg L.Remarks on Finding Criticalpoints[J].Comm Pure Appl Math,1991,44:939-963.
  • 7Liu Shuiqiang,Tang Chunlei.Existence and Multiplicity of Solutions for a Class 0f Semilinear Elliptic Equations[J].J Math Anal Appl,2001,257:321-331.
  • 8Tang Chunlei,Wu Xingping.Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential[J].J,Math Anal Appl,2001,259:386-397.
  • 9Berger M S,Schechter M.On the Solvability of Gradient Operator Equations[J].Adv Math,1977,25:97-132.
  • 10Tang C L.Existence and Multiplicity of Periodic Solution for Nonautonomous Second Order Systems[J].Nonl Anal,1998,32(3):299-304.

共引文献18

同被引文献19

  • 1吕颖,唐春雷.一类对称二阶Hamiltonian系统的偶同宿轨(英文)[J].西南师范大学学报(自然科学版),2005,30(5):824-830. 被引量:2
  • 2DINGY H, LI S J. Homoclinie Orbits for First Order Hamiltonian Systems [J]. J Math Anal Appl, 1995, 189(2): 585 - 601.
  • 3IZYDOREK M, JANCZEWSKA J. Homoclinic Solutions for Nonautonomous Second-order Hamiltonian Systems with a Coercive Potential [J]. J Math Anal Appl, 2007, 335(2): 1119 - 1127.
  • 4LV Ying, TANG Chun-lei. Existence of Even Homoclinic Orbits for Second-order Hamiltonian Systems [J].Nonlinear Anal, 2007,. 67(7) : 2189- 2198.
  • 5TANG X H, XIAO L. Homoelinic Solutions for a Class of Second Order Hamiltonian Systems [J]. Nonlinear Anal, 2009, 71(3-4): 1140-1152.
  • 6TANG X H, XIAO L. Homoclinic Solutions for Nonautonomous Second-order Hamiltonian Systems with a Coercive Potential [J]. J Math Anal Appl, 2009, 351(2): 586- 594.
  • 7ZHANG Z, YUAN R. Homoclinic Solutions for a Class of Non-autonomous Subquadratie Second Order Hamiltonian Systems [J]. Nonlinear Anal, 2009, 71(9) : 4125 - 4130.
  • 8MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]//Applied Mathematical Sciences. New York: Springer-Verlag, 1989.
  • 9ZHAO Fu-kun,ZHAO Lei-ga,DING Yan-heng. Infinitly Mang Solutions for Asymptotically Linear Periodic Hamiltonian System[J].ESAIM:Control Optimisation and Calculus of Variations,2010,(01):77-91.
  • 10ZHAO Fu-kun,ZHAO Lei-ga,DING Yan-heng. Multiple Solutions for Asympototically Linear Elliptic Systems[J].Nonlinear Differential Equations and Applications,2008,(06):673-688.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部