期刊文献+

Energy eigenvalues from an analytical transfer matrix method

Energy eigenvalues from an analytical transfer matrix method
在线阅读 下载PDF
导出
摘要 A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential can be obtained by the method. The anharmonic oscillator potential and the rational potential are two important examples. Checked by numerical techniques, the results for the two potentials by the present method are proven to be exact and reliable. A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential can be obtained by the method. The anharmonic oscillator potential and the rational potential are two important examples. Checked by numerical techniques, the results for the two potentials by the present method are proven to be exact and reliable.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期50-55,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 60877055 and 60806041) the Shanghai Rising-Star Program,China (Grant No. 08QA14030) the Innovation Funds for Graduates of Shanghai University,China (Grant No. SHUCX092021) the Foundation of the Science and Technology Commission of Shanghai Municipality,China (Grant No. 08JC14097)
关键词 analytical transfer matrix method energy eigenvalues bound state one-dimensional potential analytical transfer matrix method, energy eigenvalues, bound state, one-dimensional potential
  • 相关文献

参考文献24

  • 1Dobrovolsky G A and Tutik R S 2000 J. Phys. A: Math. Gen. 33 6593.
  • 2Jaghoub M I 2006 Eur. Phys. J. A 27 99.
  • 3Liverts E Z and Mandelzweig V B 2007 Ann. Phys. 322 2211.
  • 4Saad N, Hall R L and Ciftci H 2006 J. Phys. A: Math.Gen. 39 7745.
  • 5Zhang M C 2008 Chin. Phys. B 17 3214.
  • 6Zhang M C and Wang Z B 2007 Chin. Phys. 16 1863.
  • 7Handy C R, Hayes H, Stephens D V, Joshua J and Summerour S 1993 J. Phys. A: Math. Gen. 26 2635.
  • 8Wei G F, Long C Y, Qin S J and Zhang X 2008 Acta Phys. Sin. 57 6730 (in Chinese).
  • 9Chen C Y, Lu F L and Sun D S 2007 Acta Phys. Sin. 56 6204 (in Chinese).
  • 10He Y, Cao Z Q and Shen Q S 2005 J. Phys. A: Math. Gen. 38 5771.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部