期刊文献+

修正的频域有限差分法在二维金属光子晶体分析中的应用 被引量:3

Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis
原文传递
导出
摘要 与介质光子晶体相比,金属光子晶体的带隙特性在毫米波和亚毫米波波段有着重要的应用价值.基于Yee网格的频域有限差分法推导得出的本征模方程,求解后能方便而又可靠地得出介质光子晶体的带隙图和场分布.但由于金属与介质的本质差异,该方法不能直接应用于金属光子晶体.文中引入了金属表面边界条件,推导了二维金属周期结构的光子带隙本征模方程.通过数值计算,得出了不同晶格结构(正方/三角格子)下两种模式(TE/TM)的全禁带特性,并与介质周期结构的禁带特性进行对比,分析了金属周期结构在模式选择和器件集成方面的优点. In contrast to dielectric photonic crystals,the propagation characteristics of metallic photonic crystals are of great importance in millimeter wave and submillimeter wave applications.It is convenient and reliable to get the band diagrams and field distributions of photonic crystals after solutions of the eigenmode equations,which is derived from the Yee-mesh-based finite-difference frequency-domain method.However,this method cannot be used for the analysis of metallic photonic crystals because of the essential distinctions between metal and dielectric.Based on this method,we derive eigenmode equations for two-dimensional metallic photonic crystals by introducing the metal surface boundary conditions.And then,after some numerical calculations,the transverse electric mode and the transverse magnetic mode global band gaps of different lattice structures are obtained,including both square lattice and triangular lattice.Finally,we discuss the advantages of metallic periodic structures in mode selection and device integration by the comparison between metallic photonic band gap and dielectric photonic band gap.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第4期2556-2563,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60871051,60871047)资助的课题~~
关键词 金属光子晶体 频域有限差分法 全禁带 metallic photonic crystal finite-difference frequency-domain global band gaps
  • 相关文献

参考文献4

二级参考文献35

  • 1王华娟,毕岗,杨冬晓,李志能.太赫兹波在金属光子晶体中的传播特性[J].微波学报,2005,21(1):31-34. 被引量:15
  • 2[1]Joannopouls J D, Villeneuve P R and Fan S 1997 Nature 386 143
  • 3[2]Anderson C M and Giapis K P 1996 Phys. Rev. Lett. 77 2949
  • 4[3]Kee C S, Kim J E and Park H Y 1997 Phys. Rev. E 56 R6291
  • 5[4]Qiu M and He S L 1999 Phys. Rev. B 60 10610
  • 6[5]Villeneuve P R and Piche M 1992 Phys. Rev. B 46 4969
  • 7[6]Cassagne D, Jouanin C and Bertho D 1995 Phys. Rev. B 52 R2217
  • 8[7]Wang R Z, Wang X H, Gu B Y and Yang G Z 2001 J. Appl. Phys. 90 4307
  • 9[8]Wang X H, Gu B Y, Li Z Y and Yang G Z 1999 Phys. Rev. B 60 11417
  • 10[9]Zhuang F et al 2002 Acta Phys. Sin. 51 355 (in Chinese)[庄飞等 2002 物理学报 51 355]

共引文献47

同被引文献32

  • 1张建民,辛红,魏秀梅.用MAEAM法计算Ag/Ni的界面能[J].物理学报,2005,54(1):237-241. 被引量:8
  • 2Yablonovitch E. Inhibited Spontaneous Solid-State Physics and Electronics [J] Lett, 1987, 58(20): 2059-2062.
  • 3Phys Rev John S. Strong Localization of Photos in Certain Disordered Dielectric Superlattices [J]. Phys Rev Lett, 1987, 58(23): 2486-2489.
  • 4Lmada M. Channel Drop Filter Using A Single Defect in A 2D Photonic Crystal Slab Waveguide [J]. Lightwave Technol, 2002, 20(5): 873-878.
  • 5Dowling J P, Scalora M, Bloemer M J, et al. The Photonic Band Edge Laser: A New Approach to Gain Enhancement [J]. J Appl Phys, 1994, 75(4): 1896-1899.
  • 6Wu L, Mazilu M, Karle T, et al. Superprism Phenomena in Planar Photonic Crystals [J]. IEEE Journal of Quantum Electronics, 2002, 38(7): 915-918.
  • 7Knight J C, Birks T A, Russell P S J, et al. Properties of Photonic Crystal Fiber and the Elective Index Model [J]. J Opt Soc Am A, 1998, 15(3): 748 752.
  • 8Mekis A, Chen J C, Kurland I, et al. High Transmission through Sharp Bends in Photonic Crystal Waveguides [J]. Phys Rev Lett, 1996, 77(18): 3787- 3790.
  • 9Lin S Y, Chow E, Hietala V, et al. Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in A Photonic crystal [J]. Science, 1998, 282(5378): 274-276.
  • 10Poilsne G, Pouliguen P, Mahdjoubi K, et al. Experimental Radiation Pattern of Dipole inside Metallic Photonic Bandgap Material [J]. Microwave and Optical Technology Letters, 1999, 22(1): 10-16.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部