期刊文献+

r点码和最小距离

R-point Codes and Their Minimum Distance
在线阅读 下载PDF
导出
摘要 首先给出r元组的魏尔斯特拉斯半群的相关理论,然后用其构造一类代数几何码,这类码称为r点码,且其最小距离超过其设计距离,另外这类码比同曲线上的一点码具有更好的参数。 In this paper, we give out the theory about the weierstrass semigroup of any r--tuple of point at first,then use them to construct algebraic geometry codes, which are called r--point code, with minimum distance exceeding the de- signed distance. In addition, our results show that the r--point codes have better parameters than comparable one--point codes on the same curve.
出处 《安庆师范学院学报(自然科学版)》 2010年第1期7-9,共3页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 魏尔斯特拉斯半群 代数几何码 代数曲线 Weierstrass semigroup, algebraic geometry code, algebraic curve
  • 相关文献

参考文献9

  • 1V. D. Goppa. Algebraic-geometric codes[J].Math. ,1983(21):75-91.
  • 2V. D. Goppa. Geometry and Codes[J]. Kluwer,1988.
  • 3A. Garcia, S. J Kim and R. F. Lax. Consecutive Weierstrass gaps and minimum distance of Go-Ppa codes[J]. J. Pure Appl. Algebra, 1993(84) :199-207.
  • 4C. Carvalho and F. Torres. On Goppa codes and Weierstrass gaps at several points[J]. Design. Codes and Cryptography,2005 (35) : 211-225.
  • 5E. Ballico and S. J KIM. Weierstrass multiple loci of n-pointed algebraic curves[J]. J. Algebra ,1998(199):455-471.
  • 6M. Homma,The Weierstrass semigroup of a pair of points on a curve[J]. Arch. Math. ,1996(67): 337-348.
  • 7E. Arbarello, M. Cornalba,P. Griffiths and J. Harris. Geometry of Algebraic Curves[J]. Springer-Verlag, 1985.
  • 8G. L. Mathews. The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian Curve[C]. The proceedings of the Seventh International Conference on Finite Fields And Applications, Toulouse, 2003.
  • 9T. Johnsen,S. Manshadi and N. Monzavi. A determination of the parameters of a large class of Goppa codes[J]. IEEE Trans. Inform. Theory,1994, 40(5): 1 678-1 681.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部