期刊文献+

基于无向图序列标注模型的中文分词词性标注一体化系统 被引量:12

Joint Chinese Word Segmentation and POS Tagging System with Undirected Graphical Models
在线阅读 下载PDF
导出
摘要 在中文词法分析中,分词是词性标注必须经历的阶段。为了能在分词阶段就充分利用词性标注的信息和减少两阶段错误的累计,最好的方法是将两个阶段,整合到一个架构中。该文以无向图模型为基础,将分词和词性标注有机地统一在一个序列标注模型中。由于可以采用更深层次的依赖关系作为特征,一体化系统在1998年人民日报语料上取得了97.19%的分词精确率和95.34%的词性标注精确率,是目前同类系统,在这一语料上取得的最好结果。 For Chinese Part-Of-Speech(POS) tagging,word segmentation is a preliminary step.To reduce accumulated errors between two steps and improve the segmentation performance by utilizing POS information,segmentation and POS tagging can be performed simultaneously.In this paper,a joint segmentation and POS tagging system is proposed based on undirected graphical models which can make full use of the dependencies between the two stages.In the joint system,segmenting and tagging are viewed as the sequence labeling;moreover any connected sub-graph can be viewed as a certain dependency which can be used to find the final opinion labeling.The joint model achieves high performances with 97.19% in segmentation precision and 95.34% in POS tagging precision,which are the state-of-art performances for Chinese word segmentation and tagging on 1998-year People's Daily corpus.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第3期700-704,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60773069 60973169)资助课题
关键词 中文分词 词性标注 一体化系统 无向图模型 Chinese words segmentation Part-Of-Speech (POS) tagging Joint system Undirected graphical model
  • 相关文献

参考文献12

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:251
  • 3梁南元.书面汉语自动分词系统—CDWS[J].中文信息学报,1987,(2):44-52.
  • 4张华平,刘群.基于N-最短路径方法的中文词语粗分模型[J].中文信息学报,2002,16(5):1-7. 被引量:99
  • 5Suzuki J and Isozaki H. Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data [C]. Proceeding of Association for Computational Linguistics, Columbus, Ohio, USA, June 2008: 665-673.
  • 6Goldberg Y, Adler M, and Elhadad M. EM can find pretty good HMM POS-taggers [C]. Proceeding of Association for Computational Linguistics, Columbus, Ohio, USA, June 2008: 746-754.
  • 7Zhang Y and Clark S. Chinese segmentation with a word-based perceptron algorithm [C]. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, June 2007: 840-847.
  • 8Zhang Y and Clark S. Joint word segmentation and POS tagging using a single perceptron [C]. Proceeding of Association for Computational Linguistics. Columbus, Ohio, USA. 2008: 888-896.
  • 9Hwee Tou Ng and Jin Kiat Low. Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based [C]? Proceedings of the Conference on Empirical Methods in Natural Language Processing, Barcelona. 2004: 277-284.
  • 10Jiang Wen-bin, Huang Liang, Liu Qun, and lu Yan-jun. A cascade linear model for joint Chinese word segmentation and part-of-speech tagging [C]. Proceeding of Association for Computational Linguistics, Columbus, Ohio, USA, 2008: 897-904.

二级参考文献34

共引文献545

同被引文献87

引证文献12

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部