期刊文献+

基于BP神经网络的板式热交换器传热与流阻性能预测 被引量:3

BP Neural Network for Predicting the Heat Exchanger Performance and Pressure Drop Characteristics of Plate Heat Exchanger
在线阅读 下载PDF
导出
摘要 应用BP神经网络,建立了一种新的板式热交换器传热与流阻性能预测模型。它利用BP神经网络的函数拟合能力,通过拟合板式热交换器单板传热面积、板片厚度、波纹深度、波纹节距及波纹夹角等参数,来预测板式热交换器的传热系数、冷热侧压力降和传热准则关联式,对板式热交换器的传热与流阻性能做出综合评价。 The method of neural network was used to establish a new model of predicting the heat exchanger performance and pressure drop characteristics of plate heat exchanger. The func- tion fitting ability of BP neural network was utilized by fitted specific isoperimetric, such as nomi- nal plate area, plate thickness, chevron depth, normal pitch, plate chevron angle, and so on. This method was used to predict the heat exchanging modulus K, pressure drops of both cold and hot sides and rule equation in plate heat exchangers. It provided a new higher precision method for e- valuating the synthesis performance of plate heat exchanger.
出处 《石油化工设备》 CAS 2010年第2期1-5,共5页 Petro-Chemical Equipment
关键词 板式热交换器 神经网络 性能预测 传热系数 准则关联式 plate heat exchanger neural network performance prediction heat transfer coefficient rule equation
  • 相关文献

参考文献7

二级参考文献25

  • 1王忠堂,栾瑰馥,白光润,小畠耕二.变截面管类件无模拉伸工艺的研究[J].热加工工艺,1995,24(1):11-13. 被引量:9
  • 2刘雪峰,何勇,毕重武,谢建新.镍钛形状记忆合金线材无模拉拔成形过程的电磁场和温度场模拟[J].稀有金属,2005,29(5):762-767. 被引量:10
  • 3施阳 李俊.MATLAB语言工具箱-TOOLBOX使用指南[M].西安:西北工业大学出版社,1998..
  • 4金龙 罗莹 袁成松.农业气象干旱防灾减灾的一种预报方法.南京大学学报,1996,32:112-117.
  • 5丁国良,张春路,刘浩.结合人工神经网络的翅片管式冷凝器快速仿真模型.见:中国工程热物理学会传热传质学学术会议论文集.济南,2000
  • 6丁国良,张春路,詹涛.结合神经网络的换热器积分近似模型.见:中国工程热物理学会传热传传质学学术会议论文集(下).青岛,2001.950-954
  • 7Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5):359~366
  • 8Blum E K, Li L K. Approximation theory and feed forward networks. Neural Networks, 1991,4 (4): 511~515
  • 9Huang S C, Huang Y F. Bounds on number of hidden neurons in multiplayer perceptrons. IEEE Trans on Neural Networks,1991, 2(1) :47~55
  • 10Sartori M A, Antsaklis P J. A simple method to drive bounds on the size and to train multiplayer neural networks. IEEE Trans on Neural Networks, 1991, 2(3): 467~471

共引文献147

同被引文献28

  • 1喻九阳,朱兵,冯兴奎,夏文武,何伟,易先中.折流板开孔孔径对换热器壳程性能的影响[J].石油机械,2004,32(9):9-11. 被引量:6
  • 2刘宏,魏新利.充分利用压降优化换热器设计[J].轻工机械,2006,24(4):158-160. 被引量:3
  • 3肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究[J].化学工程,2007,35(1):12-15. 被引量:39
  • 4高晓东,冯霄.管壳式换热器壳程强化传热评价方法分析[J].华北电力大学学报(自然科学版),2007,34(2):95-97. 被引量:10
  • 5董其伍.换热器[M].北京:化学工业出版社,2008:222-225.
  • 6HUADONG LI, VOLKER KOTTKE. Effect of Baffle Spacing on Pressure Drop and Local Heat Transfer in Shell and Tube Heat Exchangers for Staggered Tube Arrangement[J]. Int. J. Heat Mass Transfer, 1998,41(10):1303-1311.
  • 7Mukherjee R. Effectively Design Shell and Tube Heat Exchangers[J]. Chem. Eng. Progress, 1998,94 (2) : 21-37.
  • 8Saffar-Avval M, Damangir E. A General Correlation for Determining Optimum Baffle Spacing for All Types of Shell and Tube Exchangers[J]. Int. J. Heat Mass Transfer, 1995,38(13) :2501-2506.
  • 9Khalifeh Soltan B, Saffar-Avval M. Minimizing Capital and Operating Costs of Shell and Tube Condensers Using Optimum Baffle Spacing[J]. Applied Thermal Engineering, 2004,24 : 2801-2810.
  • 10Dogan Eryener. Thermoeconomic Optimization of Baffle Spacing for Shell and Tube Heat Exchangers[J]. Energy Conversion and Management, 2006,47 : 1478-1489.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部