期刊文献+

一类随机非光滑振动系统相空间中不同吸引域边界的随机分形 被引量:3

RANDOM FRACTAL BOUNDARIES OF DIFFERENT ATTRACTING DOMAINS IN THE PHASE SPACE OF A STOCHASTIC NON-SMOOTH OSCILLATORY SYSTEM
原文传递
导出
摘要 由于复杂动力学行为而导致非线性振动系统相空间中不同吸引子的吸引域边界出现分形的情况比较普遍。该文数值研究一类受周期与有界噪声激励联合作用的碰振系统的全局动力学特征。通过改进胞映射方法,并给出庞卡莱映射的一种特殊形式,以对此类系统的全局动力学行为进行了模拟。结果表明:通过调整参数值,系统相空间里也可出现多个随机吸引子,不同吸引域的边界将呈现随机分形形状。 It is common for many oscillatory systems to encounter incursive fractal boundaries between different attracting domains in their phase spaces due to their complex dynamical behaviors.This study is focused on the global dynamics of a nonlinear oscillator with rigid constraints under multiple harmonic and bounded-noise excitations.The well-known cell mapping method is developed,and a specific Poincare map is then introduced to simulate the global dynamics of the system.It is shown that several kinds of stochastic attractors may coexist in the space of such system by adjusting the parameters’ values.In addition,random fractal boundaries will arise between different attracting domains of stochastic attractors.
出处 《工程力学》 EI CSCD 北大核心 2010年第3期1-5,共5页 Engineering Mechanics
基金 国家自然科学基金项目(10672140)
关键词 非光滑振动 有界噪声 胞映射 随机吸引子 随机分形 non-smooth oscillation bounded noise cell mapping random attractor random fractal
  • 相关文献

参考文献13

  • 1李健,张思进.非光滑动力系统胞映射计算方法[J].固体力学学报,2007,28(1):93-96. 被引量:17
  • 2Hsu C S, Guttalu R S. An unracelling algorithm for global analysis of dynamical systems: An application of cell-to-cell mappings [J]. Journal of Applied Mechanics,1980,47:940-948.
  • 3Hsu C S. Global analysis by cell mapping [J]. International Journal of Bifurcations and Chaos, 1992, 2: 727-771.
  • 4Tongue B H, Gu K. Interpolated cell mapping of dynamical systems [J]. Transactions of the ASME, Journal of Applied Mechanics, 1988, 55:461-466.
  • 5Frey M, Simi E. Noise-induced chaos and phase space flux [J]. Physica D, 1993, 63: 321-340.
  • 6Lin H, Yim S C S. Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors [J]. ASME Journal of Applied Mechanics, 1996, 63: 509-516.
  • 7Gan C. Noise-induced chaos and basin erosion in softening Duffing oscillator [J]. Chaos, Solitons and Fractals, 2005, 25: 1069-1081.
  • 8Gan C. Noise-induced chaos in Duffing oscillator with double wells [J]. Nonlinear Dynamics, 2006, 45(3-4): 305-317.
  • 9Makarov D, Uleysky M. Specific Poincare map for a randomly-perturbed nonlinear oscillator [J]. Journal of Physics A: Mathematical and General, 2006, 39: 489- 497.
  • 10Crauel H, Flandoli F. Attractors for random dynamical systems [J]. Probab Theory Relat Fields, 1994, 100: 365-393.

二级参考文献4

  • 1陆启韶,金俐.具有刚性约束的非线性动力系统的局部映射方法[J].固体力学学报,2005,26(2):132-138. 被引量:13
  • 2Shaw S W,Holmes P J.A periodically forced piecewise linear oscillator.Journal of Sound and V ibration,1983,90 (1):129-155.
  • 3Hsu C S.A gerenalized theory of cell-to-cell mapping for nonlinear dynamical systems ASME.J Appl Mech,1981,48:634-642.
  • 4Virgin L N,Begley C J.Grazing bifurcations and basins of attraction in an impact-friction oscillator.Physica D,1999,130:43-57.

共引文献16

同被引文献48

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部