期刊文献+

基于角度特征分量特征的步态识别 被引量:2

Gait Recognition Based on Components of Angle Feature
在线阅读 下载PDF
导出
摘要 目前,在步态识别技术中多数描述步态特征的方法在非侧面视角下识别效果一般都不够理想,通常会明显低于侧面视角,针对这一问题,文章提出一种以角度特征分量特征作为步态特征的识别方法,提高步态特征的分类能力从而提高识别率。在步态检测部分文章采用基于色度坐标的混合高斯来抑制阴影和消除噪声,步态识别部分使用支持向量机对所提取的角度特征分量特征进行训练和分类,最终在保证侧面视角识别率的情况下同时提高在非侧面视角下的识别效果。 At present,most gait feathers can not work very well but lateral angles of view in gait recognition technology,even worse obviously than other views usually.In order to solve the problem,a new method gait recognition based on components of angle feature is proposed in this paper to improve the classification capacity of gait feature.The paper adopts GMM based on chromaticity coordinates in gait detection and uses SVM to train and recognize gait by the components of angle feature.So while it will insure the recognition rate in lateral view,it will also improve it in other views.
出处 《计算机与数字工程》 2010年第3期135-138,共4页 Computer & Digital Engineering
关键词 步态识别 角度特征 分量特征 混合高斯 支持向量机 gait recognition angle feature component feature GMM SVM
  • 相关文献

参考文献7

  • 1Arnit Kale, A. N. Rajagopalan, et al. Identification of Humans Using Gait[D]. Center for Automation Research University of Maryland at College Park, MID 20740,2002.
  • 2P. Power, J. Schoonees. Understanding Background Mixture Models for Foreground Segmentation [C]// proc. of Image and Vision Computing New Zealand, 2002 : 267- 271.
  • 3N. Bougouris, K. Plataniotis, D. Hatzinakos. An Angular Transform of Gait Sequences for Gait Assisted Recognition[C]//proc. of 2004 International Conference on Image Processing, 2004,2 : 857-860.
  • 4Daniel J. Mashao. A hybrid GMM-SVM speaker identification system[C]//IEEE AFRICON, 2004.
  • 5Chih-chung Chang, Chih-Jen Lin. LIBSVM: a library for support vector maehines[C]//Software available at http://www, csie. ntu. edu. tw/cjlin/libsvm, 2001.
  • 6李新仕,王天江,刘芳.基于高斯混合模型的视频运动对象自动分割算法[J].计算机科学,2009,36(1):205-207. 被引量:7
  • 7CASIA数据库.http://www.cbsr.ia.cn[S].

二级参考文献9

  • 1刘志,杨杰,彭宁嵩.基于假设检验和区域合并的视频对象分割[J].数据采集与处理,2004,19(2):124-129. 被引量:7
  • 2Kim C, Hwang J N. Fast and automatic video object segmentation and tracking for content based applications. IEEE Trans on Circuits and Systems for Video Technology, 2002,12 (2): 122-129
  • 3Wei Wei,Ngan K N, Habili N. Multiple feature clustering algorithm for automatic video object segmentation//Acoustics, Speech,and Signal Processing (ICASSP'04). 2004,3:17-21
  • 4Cover T M,Thomas J A. Elements of Information Theory. John Wiley and Sons, 1991
  • 5Belongie S, Carson C, Greenspan H, et al. Color and texture-based image segmentation using EM and its application to content based image retrieval//Proc, of the Int. Conference on Computer Vision. 1998 : 675-682
  • 6Greenspan H , Goldberger J , Mayer A. Probabilistic space time video modeling via piecewise GMM[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004,26 (3) : 384-396
  • 7Gharvi H , Mills M. Block - matching motion estimation algorithms new results. IEEE Trans on Circuits and Systems, 1990, 37(5):649-651
  • 8向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257. 被引量:54
  • 9杨莉,张弘,李玉山.视频运动对象的自动分割[J].计算机辅助设计与图形学学报,2004,16(3):301-306. 被引量:37

共引文献6

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部