期刊文献+

改进的蚁群算法求解连续函数约束优化问题 被引量:2

Improved ant colony optimization for solving constrained continuous function optimization problems
在线阅读 下载PDF
导出
摘要 对基本蚁群算法框架进行了改进,采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,同时对信息素的更新方式也做出调整,提出了一种新的蚁群算法,使得其更适合解决连续函数问题。将这种改进的蚁群算法应用于带有约束条件的连续函数问题中,在典型实例中进行仿真测试,实验结果表明,提出的改进蚁群算法可以很好地解决带有约束条件的连续函数问题,并能迅速找到最优解。 The basic framework of ant colony algorithm has been improved, which uses roulette wheel selection instead of the way of choosing the path through heuristic function and pheromone in the basic framework. At the same time, the way of updating the pheromone is redesigned. A new ant colony algorithm is proposed to make it more suitable to solve the problem of continuous function. This improved algorithm is applied to some typical continuous function problems with constraints, and the simulation test results show that the improved ant colony algorithm quickly find the optimal solution.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第5期1027-1030,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60573066) 国家自然科学基金-广东省联合基金重点项目(U0835002)
关键词 蚁群优化算法 连续函数 约束 非均匀 随机搜索 ant colony optimization continuous function constraint non-uniform random search
  • 相关文献

参考文献8

  • 1Marco Dorigo, Tommas Stutzle. Ant colony optimization [M]. MIT Press, 2004.
  • 2Dorigo M,Gambardella L M.Ant colony system: a cooperativelearning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997(1):53-66.
  • 3孙宇明.作业车间调度问题的改进混合遗传算法[J].数学理论与应用,2007,27(1):75-77. 被引量:3
  • 4Fidanova S.ACO Algorithm for MKP using various heuristic information [C]. 5th Int'l Conference of Numerical Methods and Applications, LNCS 2542.Germany:Springer,2002:434-440.
  • 5陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 6段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977. 被引量:74
  • 7Coello C A C.Use of a self-adaptive penalty approach for engineering optimization problems [J]. Computer in Industry, 2000, 41:113-127.
  • 8Deb K.Optimal design of a welded beam via genetic algorithms [J].AIAA Journal, 1991,29:2013 -2015.

二级参考文献11

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:214
  • 3Macro Dorigo, Gianni Di Caro, Luca M Gambardella. Ant algorithms for discrete optimization[J]. Artificial Life,1999,5(3):137-172.
  • 4Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [C]// Proceedings of European Conference on Artificial Life, Paris, 1991: 134-142.
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man,and Cybernetics-Part B (S1083-4419), 1996, 26(1): 29-41.
  • 6Bonabeau E, Yang J B. Inspiration for optimization from social insect behavior [J]. Nature (S0028-0836), 2000, 406(6): 39-42.
  • 7Xiong W Q, Wei P. A kind of ant colony algorithm for function optimization [CJ//Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 2002: 552-555.
  • 8Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem [C]// Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis,1997: 309-314.
  • 9李艳君,吴铁军.连续空间优化问题的自适应蚁群系统算法[J].模式识别与人工智能,2001,14(4):423-427. 被引量:8
  • 10马良,姚俭,范炳全.蚂蚁算法在交通配流中的应用[J].科技通报,2003,19(5):377-380. 被引量:10

共引文献135

同被引文献19

  • 1DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learing approach to the trareling saleman problem[J].IEEE Transactions on Evolution Computation,1991,1 (1):53-66.
  • 2DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B,1996,26 (1):29-41.
  • 3GAMBARDELLA L M,DORIGO M.Solving symmetric and asymmetricTSPs by ant coloNies[C] //Proc IEEE Int Conf Evol Comp.Piscataway:NJ,IEEE Press,1996:622-627.
  • 4TESSEMA B, YEN G G. An adaptive penalty formulation for con- strained evolutionary optimization [ J]. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans,2009,39 (3) :565-578.
  • 5JIANG Hui-min, KWONG C K, CHEN Zeng-qiang, et al. Chaos particle swarm optimization and T-S fuzzy modeling approaches to con- strained predictive control [ J]. Expert Systems with Applications, 2012,39( 1 ) : 194-201.
  • 6LIANG J J, RUNARSSON T P, MEZURA-MONTES E, et al. Prob- lem definitions and evaluation criteria for the CEC2006 special session on constrained real-parameter optimization [ R ]. Singapore : Nanyang Technological University ,2006.
  • 7RUNARSSON T P, YAO X. Stochastic ranking for constrained evolu- tionary optimization [ J ]. IEEE Trans on Evolutionary Computa- tion ,2000,4 ( 3 ) :284-294.
  • 8周建新,杨卫东,李擎.求解连续函数优化问题的改进蚁群算法及仿真[J].系统仿真学报,2009,21(6):1685-1688. 被引量:11
  • 9孙晓雅,林焰.基于信息熵的免疫粒子群算法求解指派问题[J].微电子学与计算机,2010,27(7):65-68. 被引量:4
  • 10赵海英,李桂成,崔军.正态分布蚁群算法求解函数优化问题[J].计算机工程与应用,2010,46(30):54-56. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部