期刊文献+

梯级水电站调度图优化的混合模拟退火遗传算法 被引量:11

Optimization of operation chart of cascade hydropower stations based on hybrid genetic algorithm and simulated annealing
在线阅读 下载PDF
导出
摘要 为提高水库群联合调度时的水资源利用率,重新审核水库群系统中原有单库调度图的有效性,本文提出了一种解决库群联合调度多目标、多变量的智能优化新方法—混合模拟退火遗传算法。该方法将遗传算法的全局搜索能力和模拟退火算法的局部搜索能力相结合,提高了计算效率和精度,避免了手工修正调度图的随意性。在以实际生产项目为依托的应用与检验中,在满足各类边界条件及保证率要求的前提下,该方法对梯级水电站水库调度图的优化可行、有效,为优化梯级水库调度图提供了一种新的有效算法。 To improve the water resources utilization rate of reservoir group,we reassesse effectiveness of single reservoir operation graph according to conventional methods.We put forward an intelligent optimization method—hybrid simulated annealing genetic algorithm to united dispatch cascaded hydropower stations with multiple targets and variables.By combining the global search ability of genetic algorithm and local search ability of simulated annealing algorithm,the algorithm can improve calculation efficiency and accuracy and avoid the arbitrariness of manual operation graph correction.In the practical dispatch,the algorithm is proved effective and feasible in optimization of operation graph of cascade reservoirs when various boundary conditions and probabilities are met.It provides a new and effective algorithm to optimize the operation graph of the cascade reservoirs.
出处 《人民长江》 北大核心 2010年第3期34-37,共4页 Yangtze River
基金 国家自然科学基金资助项目(50609007)
关键词 水库调度图 水电站经济运行 调度优化 混合模拟退火遗传算法 reservoir operation chart economical operation of hydropower station operation optimization hybrid genetic algorithm and simulated annealing
  • 相关文献

参考文献4

二级参考文献17

  • 1袁鹏,常江,朱兵,李彬.粒子群算法的惯性权重模型在水库防洪调度中的应用[J].四川大学学报(工程科学版),2006,38(5):54-57. 被引量:13
  • 2"运筹学"编写组.运筹学[M]. 北京:清华大学出版社,1987.
  • 3王平.灌溉水库兴利调度图长系列计算方法的改进[J].中国农村水利水电,1997(7):24-27. 被引量:20
  • 4Muehlenbein. H. Rodriguez. A. Schemata, distribution and graphical models in evolutionary optimization 1998.
  • 5Stuart G,Donald G. Stochastic Relaxation Gibbs Distributions,and the Buyesian restoration of images[M]. IEEE Trans On PAMI, 1984.
  • 6Sirag D J, Weisser D J. Toward unified thermodynamic genetic operator[M]. In: Proc int Conf on Genetic Algorithms and their Applications, Erbum Association, Hillsdale NJ, 1987.
  • 7Boseniuk. T, Ebeling. W. Boltzmann-Darwin and Heackel -strategies in optimisation problems[M]. In: Proc Int Conf on Parallel Problem Solving from Nature , New York, 1990.
  • 8Mahfoud . S W, Golberg D E. A Genetic algorithm for parallel simulated annealing [M]. In: Proc int Conf on Parallel Problem Solving from Nature, Netherland, 1992.
  • 9Goldberg. D. E. GeneticAlgorithms in Search[M]. Optimization and Machine Learing Addi-Wesley, 1989.
  • 10Muehlenbein. H. From recombination of genes to the Estimation of distribution I. Binay Parameters [ J ]. Parallel problem Solving from Nature, 1996, (4).

共引文献53

同被引文献113

引证文献11

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部