期刊文献+

基于粗糙集和支持向量机的电力系统短期负荷预测 被引量:5

Short-Term Load Forecasting Based on Algorithms of Rough Sets and Support Vector Machine
在线阅读 下载PDF
导出
摘要 针对电力系统短期负荷预测中,高维大样本环境下支持向量机算法面临的耗时增大与维数灾问题,将序列最小优化算法(SMO)和粗糙集(RS)理论相结合,提出了一种新的算法——RS-SMO算法。该算法主要是用粗糙集理论进行负荷预测属性的约简,然后用其生成的边界集作为SMO的训练子集,从而使训练集的维数和规模有所减少。采用河北省某市的实际负荷数据进行算例分析,并对RS-SMO和SMO算法的预测结果进行了比较。结果表明,提出的RS-SMO算法有较高的预测精度。 For Short-term load forecasting, high-dimensional environment, large sample support vector machine algorithm facing time-consuming and increased number of disaster-dimensional problem, this article will be the smallest sequence optimization (SMO) and the rough set (RS) theory, put forward a new algorithra, RS-SMO algorithm. The algorithm was used on rough set theory attributes the load forecast reduction, and then set the borders of their generation as a subset of SMO training, so that the training set of dimensions and size of the reduction. One city in Hebei Province using the actual load data analysis examples, and RS-SMO and SMO algorithm results were compared, the results showed that the RS-SMO algorithm for a higher forecast accuracy.
出处 《电力科学与工程》 2010年第2期32-35,共4页 Electric Power Science and Engineering
关键词 粗糙集 支持向量机 序列最小优化算法 短期负荷预测 rough set support vector machine SMO theory Short-Term Load Forecasting
  • 相关文献

参考文献4

二级参考文献11

共引文献51

同被引文献52

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部