期刊文献+

一种基于均值漂移的视频场景检测方法 被引量:3

A Video Scene Detection Method Based on Mean Shift
在线阅读 下载PDF
导出
摘要 提出了一种高效的视频场景检测方法。首先基于均值漂移,在滑动镜头窗内对各镜头聚类,并获得相应的聚类中心,然后根据电影视频场景的发展模式,计算两个镜头类之间的时序距离,接着基于时空关系进行场景检测,并且由相应的聚类中心获得场景关键帧,最后对场景过分割进行后续处理。实验证实该方法能快速聚类,并且有效地检测出场景和场景关键帧。 An efficient algorithm for scene detection is proposed. Where firstly within a sliding shot window, the shots are clustered and each cluster center is achieved rapidly by employing MS clustering, then according to the development pattern of film video scene, the temporal distances between two shots are computed and scenes are detected based on the temporal and spatial relationship. In addition, the scene key frames can be achieved on the basis of corresponding cluster centers. Finally, a succeeding procession for over-segmented scenes is introduced. Experiments prove this algorithm can cluster shots rapidly and detect scenes and the key frames of the scence efficiently.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第2期314-320,共7页 Journal of Image and Graphics
基金 南京理工大学科技发展基金(XKF09023)
关键词 均值漂移 聚类 镜头类 场景检测 场景关键帧 mean shift, clustering, shot cluster, scene detection, scene key frame
  • 相关文献

参考文献11

二级参考文献77

  • 1程文刚,须德,郎丛妍.一种有效的视频场景检测方法[J].中国图象图形学报(A辑),2004,9(8):984-990. 被引量:6
  • 2李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4王兆虎,刘芳,焦李成.一种基于视觉特性的遥感图像分割[J].计算机学报,2005,28(10):1686-1691. 被引量:10
  • 5Swanberg D, Shu C F, Jain R. Knowledge guided parsing in video databases [A]. In.. Proceedings of SPIE Storage and Retrieval for Image and Video Databases(1908)[C], San Jose,CA,USA,1993:13-21.
  • 6Boykin S, Merlino A. Machine learning of event segmentation for news on demand [J]. Communications of the ACM, 2000,43(2) : 35-41.
  • 7Lu Hong, Tan Yap-peng. An unsupervised approach to dominant video scene clustering[A]. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS'03)[C], Bangkok, Thailand, 2003:680-683.
  • 8Yeung M M, Yeo B L, Liu B. Segmentation ozf video by clustering and graph analysis [J]. Computer Vision and Image Understanding, 1998,71(1):94-109.
  • 9Sundaram H, Chang S F. Determining computable scenes in films and their structures using audiovisual memory models[A].In: Proceedings of ACM Multimedia Conference [C ], Los Angels, CA, USA, 2000:95-104.
  • 10Chen S C, Shyu M L,I.iao W, et al..Scene change detection by audio and video clues[A]. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME2002) [C ],Lausanne, Switzerland, 2002 : 365 - 368.

共引文献83

同被引文献26

  • 1彭培华,曲波,陈荣胜.基于支持向量机的小波域视频字幕检测与提取[J].华南理工大学学报(自然科学版),2004,32(z1):63-66. 被引量:4
  • 2程文刚,须德,郎丛妍.一种有效的视频场景检测方法[J].中国图象图形学报(A辑),2004,9(8):984-990. 被引量:6
  • 3张亮,朱振峰,赵耀,卢汉清.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83-88. 被引量:6
  • 4赵亚琴,周献中,何新.一种层次的电影视频摘要生成方法[J].中国图象图形学报,2007,12(8):1412-1417. 被引量:5
  • 5Yeung M, Yeo B L, Liu B. Segmentation of video by clustering and graph analysis [ J ]. Computer Vision and Image Understanding, 1998,71 ( 1 ) :94-109.
  • 6Huang Y P, Hsu L-W, Sandnes F E, et al. An intelligent subtitle detection model for locating television commercials [ J ]. IEEE Transactions on Systems, Man, and Cybernetics ,2007:485-492.
  • 7Rabiner L R. A tutorial on hidden Markov models and selected application in speech recognition [ J ]. Proc IEEE, 1989,77 (2) :257-286.
  • 8C Shih-Sian,W Hsin-Min,F Hsin-Chia. BIC-based audio segmentation by divide-and-conquer [ A ]. Acoustics, Speech and Signal Processing,2008. ICASSP 2008. IEEE International Conference on [ C ]. Las Vegas, USA: CRC Press ,2008:4841-4844.
  • 9Stutz T, Uhl A. A survey of h. 264 avc/svc encryption[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22 ( 3 ) : 325-339.
  • 10Asghar M, Ghanbari M. An efficient security system for CABAC bin-strings of H. 264/SVC [ J ]. IEEE Transactions on Circuits and Systems for Video Technology ,2013,23 (3) :425-437.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部