期刊文献+

Controlling chaos to unstable periodic orbits and equilibrium state solutions for the coupled dynamos system 被引量:5

Controlling chaos to unstable periodic orbits and equilibrium state solutions for the coupled dynamos system
在线阅读 下载PDF
导出
摘要 In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position. In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期149-156,共8页 中国物理B(英文版)
基金 supported by the Doctoral Foundation of North China Electric Power University (Grant No. kH0433) the International Science and Technology Cooperation Program (Grant No. 2007DFA71250)
关键词 coupled dynamos system delayed feedback control adaptive control controlling chaos coupled dynamos system delayed feedback control adaptive control controlling chaos
  • 相关文献

参考文献17

  • 1Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196.
  • 2Braiman Y and Goldhirsch I 1991 Phys. Rev. Lett. 66 2545.
  • 3Rajasekar S 1995 Phys. Rev. E 51 775.
  • 4Ramesh M 1999 Chaos, SoIitons & Fractals 10 1473.
  • 5Liu Z H and Chen S G 1997 Phys. Rev. E 56 168.
  • 6Liu Z H and Chen S G 1997 Phys. Lett. A 232 55.
  • 7Wang X Y and Wu X J 2006 Acta Phys. Sin. 55 5083.
  • 8Agiza H N 2002 Chaos, Solitons & Fractals 13 341.
  • 9Agiza H N 2004 Int. J. Mod. Phys. C 15 873.
  • 10Wang X Y 2003 Chaos in the Complex Nonlinearity System (Beijing: Electronics Industry Press) Chapt. 2 (in Chinese).

同被引文献16

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部