期刊文献+

基于小波神经网络的齿轮系统故障诊断 被引量:12

Gear fault diagnosis based on wavelet and neural network
原文传递
导出
摘要 通过对齿轮系统在不同的运转状态下不同的故障类型进行试验测试分析,获取了有关的测试信号,对振动特征信号进行了小波阈值去噪,采用离散小波变换(DWT)对去噪后的信号进行8层分解处理,对各层的小波系数进行了小波重构,得到8层细节信号和1层近似信号,并计算了各层信号的能量,得到了信号的能量分布特征.在此基础上把各层信号特征作为神经网络的输入,进行了网络的研究、分析处理和故障分类,并对小波神经网络方法与单独采用神经网络方法的故障诊断结果进行了比较评价.研究表明,去噪处理后的效果比没有去噪的信号特征更加明显,而采用小波神经网络诊断方法,对于齿轮无故障、齿根裂纹故障、分度圆裂纹故障和齿面磨损故障能够进行很好地区分与诊断,其诊断成功率均在95%以上,可对实际工程工作的齿轮系统进行故障诊断. By measuring experimentally the vibration signals of the gear system at different rotating speeds for different faults, the testing signals were obtained. The feature signals of system were analyzed using wavelet de-noising by threshold in different running conditions. Using discrete wavelet transform (DWT), the signals can be decomposed into eight detail components and an approximated component. After reconstruction of each level, their energy distributions were computed in order to extract the feature of the fault signals, these features were used for fault recognition using a neural network. The neural network was researched and analyzed. The results of using wavelet neural network and neural network were also compared. Based on the research, it indicates that the feature of the denoised signal is superior to the original one. When dealing with various situations, such as the crack at the gear root, the crack at the gear's reference circle and the wear abrasion fault of tooth surface, the performance rates are over 95%. The proposed method can be effectively used in engineering diagnosis of different faults of gear system.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第1期234-240,共7页 Journal of Aerospace Power
基金 国家自然科学基金(50575187) 航空科学基金(01I53073) 陕西省自然科学基金(2004E219) 西北工业大学研究生创业种子基金(Z200524)
关键词 离散小波变换 神经网络 特征提取 小波阈值去噪 故障诊断 齿轮 discrete wavelet transform neural network feature extraction wavelet de-noising by threshold fault diagnosis gear
  • 相关文献

参考文献10

  • 1Timusk M, Lipsett M, Mechefske C K. Fault detection using transient machine signals [J]. Mechanical Systems and Signal Processing, 2008,22(7):1724-1749.
  • 2邵忍平,黄欣娜,胡军辉.聚类分析的数据挖掘方法及其在机械传动故障诊断中的应用[J].航空动力学报,2008,23(10):1933-1938. 被引量:8
  • 3Wu J D, Liu C H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network[J]. Expert Systems with Applications,2008,35(3):1200-1213.
  • 4李瑞莹,康锐.基于神经网络的故障率预测方法[J].航空学报,2008,29(2):357-363. 被引量:55
  • 5Rafiee J, Arvani F, Harifi A, et al. Intelligent condition monitoring of a gearbox using artificial neural network [J]. Mechanical Systems and Signal Processing, 2007, 21 (4):1746-1754.
  • 6To A C, Moore J R, Glaser S D. Wavelet denoising techniques with applications to experimental geophysical data [J]. Signal Proeessing,2009,89(2) :144-160.
  • 7Kim H, Melhem H. Damage detection of structures by wavelet analysis[J]. Engineering Structures, 2004,26 (3) : 347-362.
  • 8Kar C, Mohanty A R. Monitoring gear vibrations through motor current signature analysis and wavelet transform [J]. Mechanical Systems and Signal Processing, 2006,20 (1) :158-187.
  • 9Gaing Z L. Wavelet based neural network for power disturbance recognition and classification[J]. IEEE Transactions on Power Delivery, 2004,19(4): 1560-1568.
  • 10邵忍平,黄欣娜,刘宏昱,徐永强.基于高阶累积量的齿轮系统故障检测与诊断[J].机械工程学报,2008,44(6):161-168. 被引量:30

二级参考文献33

共引文献87

同被引文献128

引证文献12

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部