期刊文献+

基于提升小波变换和SVM的模拟电路故障诊断 被引量:36

Analog circuit fault diagnosis using lifting wavelet transform and SVM
在线阅读 下载PDF
导出
摘要 故障特征提取和分类器设计是模拟电路故障诊断的两个重要环节,为了提高模拟电路故障辨识的准确率,提出了提升小波变换与支持向量机相结合的故障诊断方法。根据提升小波变换的原理,提取被测电路单脉冲响应信号的小波系数构成故障特征,建立以支持向量机为分类器的故障诊断系统。该方法对两个滤波器电路的故障诊断取得了满意的效果,在故障模式较多的情况下故障分类的精度达到了99%以上,优于传统的小波方法。 Feature extraction and classifier construction are two important stages for analog circuit fault diagnosis. In order to improve correctness rate of fault identification, an approach based on lifting wavelet transform (LWT) and support vector machine (SVM) is proposed. According to the theory of lifting wavelet transform, the impulse response signal of CUT is sampled and decomposed to form fault features, and then the analog circuit fault diagnosis system is established. The experimental results on two filter circuits show that the presented approach is superior to classical wavelet analysis based methods. The fault classification accuracy can be higher than 99% with respect to large number of fault categories.
出处 《电子测量与仪器学报》 CSCD 2010年第1期17-22,共6页 Journal of Electronic Measurement and Instrumentation
基金 国防基础科研(编号:A1420061264)资助项目 国家自然科学基金(编号:60673011)资助项目
关键词 模拟电路 故障诊断 提升小波变换 支持向量机 analog circuit fault diagnosis lifting wavelet transform SVM
  • 相关文献

参考文献11

  • 1CATELANI M, FORT A. Soft fault diagnosis and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks [J]. IEEE Trans. Instrumentation. & Measurement. 2002, 51(2): 196-202.
  • 2AMINIAN M and AMINIAN E Neural-network based analog-Circuit fault diagnosis using wavelet transform as processor [J]. IEEE Transactions on Circuits and System II: Analog and Digital signal processing, 2000, 47(2): 151-156.
  • 3王承,陈光,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,17(8):1936-1938. 被引量:34
  • 4HE Y G TAN Y H, SUN Y C. Fault diagnosis of analog circuits based on wavelet packets[C]. TENCON 2004 IEEE Region 10 Conference, 2004: 267-270.
  • 5孙永奎,陈光,李辉.基于自适应小波分解和SVM的模拟电路故障诊断[J].仪器仪表学报,2008,29(10):2105-2109. 被引量:31
  • 6唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断[J].仪器仪表学报,2008,29(6):1216-1220. 被引量:30
  • 7LONG B, HUANG J G, TIAN S L. Least squares support vector machine based analog circuit fault diagnosis using wavelet transform as preprocessor[C]. ICCCAS 2008, China, May 25-27, 2008: 1026-1029.
  • 8LIAO H Y, MRINAL K M. Efficient architectures for 1-d and 2-d lifting-based wavelet transforms [J]. IEEE Trans. on Signal Processing, 2004, 52(5): 1315-1326.
  • 9段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10-13. 被引量:20
  • 10GUO C H, WANG T Q, YE J Y, et al. Retinal images fusion based on lifting wavelet transform[C]. 7th World Congress on Intelligent Control and Automation, China, June 25-27, 2008: 8511-8515.

二级参考文献30

共引文献104

同被引文献399

引证文献36

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部