摘要
The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.
The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.
基金
China Ocean Mineral Resources Research and Development Association program under contract No. DY115-02-1-01
the National Basic Research Program of China ("973" Program) under contract No.G2000078503