摘要
以圆弧、平板和尖锥为研究对象,基于线性稳定性理论,重点讨论了曲率和压力梯度对可压缩边界层稳定性的影响。在研究中,采用Cebeci-Keler的盒子格式,计算了物体表面的边界层剖面;利用二点四阶的有限差分格式,求解了稳定性方程的特征值问题。研究结果表明:凸凹不同的曲率,会产生不同的稳定机制;顺压梯度对不同物形上边界层的不同模式不稳定波的影响具有较大差异。
Circular arc,flat plate and sharp cone were used as prototypes to investigate the effects of streamwise curvature and gradient on the stability of compressible boundary layers in the frame work of linear stability theory.The boundary layer profiles on the surface are calculated using the Cebeci Keller box scheme.The stability equations are solved to determine the eigenvalues using a two point fourth order accuracy finite difference scheme.It is shown that convex and concave curvature have different effects on the stability of the flow and the effect of favorable pressure gradient on stability is different for different bodied.
出处
《空气动力学学报》
CSCD
北大核心
1998年第3期276-281,共6页
Acta Aerodynamica Sinica