期刊文献+

自适应并行机制的改进蚁群算法 被引量:7

Ant colony algorithm with adaptive parallel mechanism
在线阅读 下载PDF
导出
摘要 针对蚁群算法存在停滞现象的缺点,以及如何有效提高蚂蚁代理的搜索能力问题,提出了一种具有自适应并行机制的选择和搜索策略。该策略通过将蚁群划分为若干个子群,不同子群的蚂蚁释放不同类型的信息素,引入了吸引因子和排斥因子,实现了一种多蚁群并行选择策略,以加强其全局搜索能力。以对称旅行商问题(traveling salesman problem,TSP)测试集为对象,将改进算法与现有蚁群优化算法进行了测试比较。实验结果表明,改进后的算法具有优良的全局优化能力,有效防止了停滞现象。 In view of the stagnation behavior of ant colony optimization (ACO) algorithm, this paper proposes and implements a new dynamic transition and search strategy. The artificial ants are partitioned into several groups. Each group of ant colony releases different types of pheromones. Attract factor and exclusion factor are introduced, and a new transition probability with multiple ant colony is given so as to strengthen the global search capability. By tackling symmetric travelling salesman problems (TSP), this paper compares the improved algorithms implementation with the existing algorithms. The experimental results indicate that the improved algorithm is superior to the ACO and ant colony system, ACS algorithms. The improved algorithm has excellent global optimization properties and the faster convergence speed, and it can avoid premature convergence of ACO.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期2973-2976,共4页 Systems Engineering and Electronics
基金 江苏省科技支撑计划(工业)(SBE200800983) 江南大学自主科研计划(JUSRP30909)资助课题
关键词 蚁群算法 多蚁群 吸引因子 排斥因子 停滞现象 ant colony optimization multiple ant colony attract factor exclusion factor stagnation behavior
  • 相关文献

参考文献11

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system: optimiza tion by a colony of cooperating agents[J]. IEEE Trans. on Sys terns, Man, and Cybernetics & Part B, 1996, 26(1) : 29 - 41.
  • 2Dorigo M, Blum C. Ant colony optimization theory: a survey[J].Theoretical Computer Science, 2005, 344(2 - 3): 243 - 278.
  • 3黄树彩,李为民.超视距多目标攻击排序问题的蚁群算法[J].计算机工程,2008,34(10):158-160. 被引量:2
  • 4张石,杜恺,张伟.基于动态融合蚁群遗传算法的医学图像配准[J].计算机工程,2008,34(1):227-229. 被引量:2
  • 5Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavior[J].Nature, 2000, 406:39 -42.
  • 6Dorigo M. Caro G Di. The ant colony optimization meta-heuristic: new ideas in optimization[M]. Maidenhead: McGraw-Hill Ltd., 1999:24-68.
  • 7Schoonderwoerd R, Holland O, Bruten J, et al. Ants for load balancing in telecommunication networks[R]. Bristol, U K: Hewlett Packard Lab.,1996 : 10 - 55.
  • 8Stutzle T, Hoos H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(9):889 - 914.
  • 9Dorigo M, Maniezzo V, Colorni A. Positive feedback as a search strategy[R]. Politecnico Milano, Italy:Dipartimento Elettronica, 1991.
  • 10Varela N, Sinclair M C. Ant colony optimization for virtualwavelength-path routing and wave length allocation[C]//Proc. of Congress Evolutionary Computation, 1999 : 1809 - 1816.

二级参考文献8

共引文献2

同被引文献73

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部