期刊文献+

电解液对生物钛合金表面上纳米多孔层的影响 被引量:1

Effect of Electrolytes on Nanoporous Layer of Biological Titanium Alloy Surface
在线阅读 下载PDF
导出
摘要 分别在1%HF+3%HNO3水溶液和0.25%HN4F+1%H2O的乙二醇溶液中电化学阳极氧化Ti-5Zr-3Sn-5Mo-15Nb(TLM)合金(HF、HNO3、H2O为体积分数;HN4F为质量分数,下同),结果在其表面上获得氧化物纳米多孔层。阳极氧化时所用的溶液对纳米多孔层的形貌(孔径、孔长和孔的有序性等)有明显影响。在1%HF+3%HNO3水溶液中获得异向结构的氧化物纳米多孔层,其拥有较宽范围的孔径,在50~200nm之间;孔长约500nm。而在乙二醇溶液中,在不同的氧化电压和时间的条件下,可获得高度有序、垂直的氧化物纳米多孔层,即氧化物纳米管阵列层,管径在80~120nm之间;管长可达190μm。在TLM合金表面获得具有大的比表面积、以及几何结构为管状的氧化物纳米多孔层,其在TLM合金与相关的生物材料,如细胞和蛋白作用时,可提供新的作用环境。 Fabrication of oxide nanoporous layer on TLM (Ti-5Zr-3Sn-5Mo-15Nb) alloy by anodization in 1%HF+3% HNO3 aqueous electrolyte, and in ethylene glycol with 0.25wt%HN4F+lvo1%H2O, respectively. The results showed that electrolytes used through anodization have obviously effect on morphology of nanoporous layer(pores, pore length and ordering of pores, etc). The obtained oxide nanoporous layer in aqueous electrolyte with various oriented structures have wider pore diameter range form 50 nm to 300 nm and pore length of about 500 rim. which by ethylene glycol with 0.25wt%HN4F+1vol%H2O, the vertically oriented and highly ordered oxide nanoporous layer could be obtained with different oxidation voltage and time, i. e. the oxide nanotube arrays, whose pore diameter ranged from 20 nm to 120 nm, and pore length was from 500 nm to 190 μm. The TLM alloy surface possessed high specific surface are and the tube-like oxide nanoporous layer.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期274-277,共4页 Rare Metal Materials and Engineering
基金 中国科学院2006年度"西部之光"人才培养计划资助 国家科技支撑项目(2007BAE07B05)
关键词 生物钛合金 电化学 氧化物纳米多孔层 biological titanium alloy electrochemical oxide nanoporous layer
  • 相关文献

参考文献9

  • 1Beranek R, Hildebrand H, Schmuki P. Electrochem Solid-State Lett[J], 2003, 6B: 12.
  • 2Macak J M, Tsuchiya H, Schmuki P. Angew Chem Int Ed[J], 2005, 44:2100.
  • 3Macak J M, Tsuchiya H, Taveira LV et al. Angew Chem Int [J], 2005, 44:7463.
  • 4Tsuchiya H, Schmuki P. Electrochem Commun[J], 2005, 7:49.
  • 5Sieber I, Hildebrand H, Friedrich A et al. Electrochem Commun[J], 2005, 7:97.
  • 6Tsuchiya H, Macak J M, Sieber Iet al. Electrochem Commun [J], 2005, 7:295.
  • 7Sicber I, Kannan B, Schmuki P. Electrochem Solid-State Lett [J], 2005, 8:10.
  • 8Yu Z T, Zhou L. Mater Sci EngA[J], 2006, 438-440:391.
  • 9Gopal K Mor, Haripriya E Prakasam, Oomman K Varghese et al. Nanoletters[J], 2007, 7(8): 2356.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部